Лента событий:
MikeNik решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
22
всего попыток:
37
a/b + b/c + c/a=3,
Задачу решили:
20
всего попыток:
30
При каком значении параметра P система: x1 + 2x2 + 4x3 + 8x4 + 8x5 = 16 не имеет решения?
Задачу решили:
23
всего попыток:
25
В футбольном турнире каждая команда сыграла с каждой из остальных ровно по одному разу, причём ровно половина команд ни разу не выиграли, а ровно пятая часть игр закончились вничью.
Задачу решили:
23
всего попыток:
29
В области, ограниченной параболой y = 8 − x2 и осью Ox, находится 25 целочисленных точек (см. рис.). При каком натуральном значении k количество точек с целочисленными координатами, находящимся внутри области, ограниченной параболой y = k − x2 и осью Ox равно 2024.
Задачу решили:
14
всего попыток:
17
На рисунке изображена красная «змейка», представляющая собой бесконечную ломаную, соседние звенья которой перпендикулярны, длины её звеньев – натуральные числа 1, 2, 3, … Докажите, что все вершины ломаной лежат на параболе. Ломаная делит внутреннюю область параболы на криволинейные треугольники, площади которых соответственно равны S1, S2, S3, … Найдите площадь S100 сотого криволинейного треугольника и укажите ее в ответе.
Задачу решили:
18
всего попыток:
20
Учительница написала на доске трехзначное число АНА, и каждому ученику раздала по карточке, с двумя разными цифрами n и m, все четыре натуральных числа A, H, m и n - различны. Девочек она попросила найти значения выражения An + Hm + An, а мальчиков попросила найти значение выражения Am + Hn + Am. Выполнив задание, ученики удивились, потому что и у девочек, и у мальчиков получилось одно и тоже число. Какое наибольшее число АНА учительница могла написать на доске? Светлая память Анне Николаевне Андреевой, учителю математики и нашей коллеге на Диофанте.ру с ником xyz, позже AnnaAndreeva.
Задачу решили:
15
всего попыток:
17
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Найдите минимальное вещественное L, если K=97 и N=163.
Задачу решили:
13
всего попыток:
15
Прямоугольник N × 1 целиком помещается в прямоугольнике K × L. Дано: K=99, N=189, и L имеет минимально возможное вещественное значение. Найдите синус меньшего угла между сторонами прямоугольников.
Задачу решили:
20
всего попыток:
25
Натуральный ряд «удвоили», то есть каждое число записали дважды. Затем полученный ряд разбили на множества: M1, M2, M3, …, так, что множество Mn содержит n чисел. Ниже вертикальными черточками показано разбиение начала «удвоенного» натурального ряда на множества: 1,|1, 2,|2, 3, 3,|4, 4, 5, 5,|6, 6, 7, 7, 8,|8, 9, 9, 10, 10, 11,|11, 12, 12, 13, 13, Найдите сумму чисел в множестве M2024, укажите ее в ответе.
Задачу решили:
12
всего попыток:
17
На шестиугольной сетке ячейки закрашены следующим: красится одна ячейка и все, расположенные вдоль трех прямых, проходящих через центр начальной ячейки и образующих между собой шесть «углов» величиной 60°. В каждом из этих «углов» красятся ячейки, образующие новые «углы» величиной 60° так, что между ними образуются «углы» из незакрашенных ячеек, и так далее до бесконечности. Закрашенные ячейки в «правильных шестиугольниках» с центром в начальной образуют «снежинки». Число ячеек в этих «снежинках» задают последовательность 1, 7, 13, 19, 31, 49, 67, … Найдите номер «снежинки», которая содержит 15151 ячейку.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|