img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH решил задачу "REBUSы - 3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 133
всего попыток: 301
Задача опубликована: 16.05.12 08:00
Прислал: leonidr321 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В доме 100 этажей. Вася живет на 19-м, а Коля - на 96 этаже. Лифт в доме имеет только 2 кнопки: "+7" (подняться на 7 этажей) и "-9" (опуститься на 9 этажей). Какое минимальное количество раз должен нажать Коля на кнопку "+7", чтобы попасть к Васе на лифте.

Задачу решили: 87
всего попыток: 134
Задача опубликована: 23.05.12 08:00
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Разложить на множители многочлен   n15 +n12+1, указав два его множителя. В ответе записать сумму множителей при n=2.

Задачу решили: 152
всего попыток: 218
Задача опубликована: 04.06.12 08:00
Прислал: leonidr321 img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: xxxSERGEYxxx

Шины на передних колесах автомобиля стираются (т.е. приходят в негодность) после 30000 км пробега, а на задних - после 60000 км. Водитель нового автомобиля заинтересован в том, чтобы передние и задние колеса прослужили одинаково долго. После скольких километров пробега ему нужно поменять местами передние и задние  колеса?

Задачу решили: 89
всего попыток: 134
Задача опубликована: 06.06.12 08:00
Прислал: Saba_Dzmanashvili img
Источник: Грузинская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Найти сумму всех натуральных чисел п, для которых n·2n-1+1 является полным квадратом.

Задачу решили: 172
всего попыток: 198
Задача опубликована: 22.06.12 08:00
Прислал: deamoon img
Источник: Вступительные механико-математического факуль...
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите целое положительное значение выражения:

.

 

Задачу решили: 97
всего попыток: 128
Задача опубликована: 13.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Натуральные числа от 1 до  1200 разбиты на три группы. Каждое число принадлежит только одной группе. Пусть a, b, c  сумма каждой группы, удовлетворяющая условиям a≤ b≤ c. Найти максимум a.

 

Задачу решили: 88
всего попыток: 120
Задача опубликована: 15.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Volga (Xxx Xxx)

Заданы 3 системы неравенств

3x-y≤11, 2x-5y≤-10,

-4x+2y≤5, x+y≤10,

2x-y≤5, 4x-2y≥10.

Точки плоскости, координаты  которых удовлетворяют данным  системам, образуют некоторое множество. Найдите точку этого множества с максимальной суммой координат x и y. В ответе укажите эту сумму.

Задачу решили: 67
всего попыток: 101
Задача опубликована: 26.08.12 08:00
Прислал: georgp img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Dremov_Victor (Виктор Дремов)

Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1,  x2,  x3 ,…. X200 принимают значения 0 или 1. 

Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.

Задачу решили: 43
всего попыток: 281
Задача опубликована: 03.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Angelina

Пусть f(x) = x^2 -10x + \frac{p}{2}. Найдите такое натуральное p, что уравнение f \circ f \circ f (x) = f(x) имеет ровно 4 различных действительных решения.

Задачу решили: 65
всего попыток: 105
Задача опубликована: 19.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Для натуральных чисел a, b, c справедливо равенство


\cfrac{a^3}{(b + 3)(c + 3)} + 
\cfrac{b^3}{(c + 3)(a + 3)} + 
\cfrac{c^3}{(a + 3)(b + 3)} = 7.

 

Найдите значение a + b + c.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.