Лента событий:
Vkorsukov решил задачу "Параллелограмм и две биссектрисы - 3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
11
всего попыток:
16
Отрезки, соединяющие центры оснований правильной шестиугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
24
всего попыток:
96
На рисунке изображена фигура тетрамино, состоящая из четырех одинаковых кубиков. Из какого наименьшего количества таких тетрамино можно сложить прямоугольный параллелепипед?
Задачу решили:
9
всего попыток:
14
Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.
Задачу решили:
12
всего попыток:
17
Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.
Задачу решили:
4
всего попыток:
7
Поверхность правильного октаэдра разрезать на несколько частей, чтобы ими можно было оклеить без просветов и наложений как два равных правильных тетраэдра, так и три равных правильных октаэдра. На какое минимальное число частей можно разрезать октаэдр?
Задачу решили:
2
всего попыток:
4
Поверхность правильного тетраэдра разрезать на части и сложить из них правильный октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
31
всего попыток:
36
В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке. Какую часть куба составляет объем этого многогранника?
Задачу решили:
22
всего попыток:
24
В правильной треугольной призме ABCA1B1C1 на ребрах AC и A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.
Задачу решили:
23
всего попыток:
30
В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что: Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|