img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 11
всего попыток: 16
Задача опубликована: 07.07.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Отрезки, соединяющие центры оснований правильной шестиугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.

Задачу решили: 24
всего попыток: 96
Задача опубликована: 28.07.21 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке изображена фигура тетрамино, состоящая из четырех одинаковых кубиков.

Параллепипед из тетрамино

Из какого наименьшего количества таких тетрамино можно сложить прямоугольный параллелепипед?

Задачу решили: 9
всего попыток: 14
Задача опубликована: 30.07.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.

Задачу решили: 12
всего попыток: 17
Задача опубликована: 02.08.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.

Задачу решили: 4
всего попыток: 7
Задача опубликована: 15.11.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Поверхность правильного октаэдра разрезать на несколько частей, чтобы ими можно было оклеить без просветов и наложений как два равных правильных тетраэдра, так и три равных правильных октаэдра. На какое минимальное число частей можно разрезать октаэдр?

Задачу решили: 2
всего попыток: 4
Задача опубликована: 24.11.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Поверхность правильного тетраэдра разрезать на части и сложить из них правильный  октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?

+ 6
  
Задачу решили: 24
всего попыток: 51
Задача опубликована: 10.12.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Vkorsukov

На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням.

Кристалл

У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 07.02.22 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В куб вписаны три равных октаэдра. Две вершины каждого октаэдра лежат в центрах противоположных граней куба, а другие четыре вершины – середины ребер куба, перпендикулярных этим граням. Многогранник, являющийся объединением этих трех октаэдров, изображен на рисунке.

Кристалл - 2

Какую часть куба составляет объем этого многогранника?

Задачу решили: 22
всего попыток: 24
Задача опубликована: 06.04.22 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
баллы: 100

В правильной треугольной призме ABCA1B1C1 на ребрах  AC и  A1C1 отмечены соответственно точки M и K так, что |AM|:|MC| = 11/5, |A1K|: |KC1|= 3/5, точка N – середина ребра BC. Найти AA1, если AA1 равно расстоянию от точки C1 до плоскости MNK и |AB| = 16.

Задачу решили: 23
всего попыток: 30
Задача опубликована: 29.04.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В правильной треугольной призме ABCA’B’C’ на рёбрах AA’, BB’, CC’ отмечены соответственно точки A’’, B’’, C’’ так, что:
|AA’’| / |AA’| = 1/2,
|BB’’| / |BB’| = 2/7,
|CC’’| / |CC’| = 4/5.

Части рёбер и объёма

Найдите соотношение объёма многогранника ABCA’’B’’C’’ к объёму призмы.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.