img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: TALMON добавил решение задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 72
Задача опубликована: 28.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
(i) 31024 - 21024 = 7a × 13b × 97c × n;
(ii) 7 × 13 × 97 и n взаимно просты.

Задачу решили: 47
всего попыток: 116
Задача опубликована: 30.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: trial (Трибунал Данилов)

Тройка действительных чисел (x, y, z) удовлетворяет условию x2 + y2 + z2 = 1. Пусть максимальное значение, которое принимает выражение (x2 - y2)(y2 - z2)(z2 - x2), равно M. Найдите 1/M2.

Задачу решили: 44
всего попыток: 205
Задача опубликована: 02.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: trial (Трибунал Данилов)

Найдите остаток от деления на 155 следующего выражения:
\sum_{n = 1}^{154} \sum_{k = 1}^{1000} n^k

Задачу решили: 39
всего попыток: 60
Задача опубликована: 05.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Для положительных действительных чисел a и b выполняется условие
(a2 - a + 1)(b2 - b + 1) = a2b2.
Полагая максимум и минимум выражения 2ab/(a + b - 1) равными M и m, найдите M2 + m2.

Задачу решили: 50
всего попыток: 61
Задача опубликована: 07.05.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

Положительные целые числа x, y удовлетворяют условию y2 = (x2 - 482)(x2 - 552). Найдите остаток от деления x + y на 1000.

Задачу решили: 166
всего попыток: 184
Задача опубликована: 09.05.14 08:00
Прислал: TALMON img
Источник: Случай из жизни
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Когда наша туристическая группа собралась в аэропорту перед отправкой в гостиницу, на наших чемоданах наклеили бирки с номерами комнат. Приехав в гостиницу, каждый поднимался к своему номеру, где его ждал его чемодан.

Когда мы с женой уже устроились, к нам постучали. Женщине в комнату № 809 не принесли чемодан, и она вместе с руководителем группы стали спрашивать по всем комнатам, не к ним ли принесли чемодан по ошибке.

Утром я встретил женщину и спросил: Нашли чемодан? Она радостно ответила: Конечно!

Где был чемодан?

Задачу решили: 141
всего попыток: 206
Задача опубликована: 12.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: ShyaMahm (Shya Mahm)

Сколько всего страниц в книге, если для их нумерации потребовались 2382 цифры?

Задачу решили: 135
всего попыток: 216
Задача опубликована: 14.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Произведение 1000 натуральных чисел равно 1000. Чему равна минимально возможная их сумма.

Задачу решили: 126
всего попыток: 202
Задача опубликована: 19.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: levvol

Сколько всего страниц в книге, если сумма всех цифр номеров страниц равна 2395?

Задачу решили: 38
всего попыток: 81
Задача опубликована: 23.05.14 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно, что для положительных действительных чисел a, b и c, верно:

a2 + b2 + c2 = 5(ab+bc+ca)/2.

Найдите минимум выражения (a+b+c)/(abc)1/3. Ответ укажите с точностью до 3-х знаков после запятой.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.