Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
10
Определим f(n) для каждого натурального n как количество прямоугольных треугольников с целыми длинами сторон, одна из которых равна n. Найдите семидесятое (в порядке возрастания) натуральное число n, для которого f(n)=14.
Задачу решили:
24
всего попыток:
32
На плоскости изображен выпуклый 9-тиугольник А1А2А3А4А5А6А7А8А9. Найти сумму углов "звёздочки" А1А3А5А7А9А2А4А6А8А1 в градусах.
Задачу решили:
19
всего попыток:
21
Пусть выпуклый 4-угольник Q (не трапеция) имеет 2 прямых угла и одну лишь пару равных сторон. Постройте отрезок (циркулем и линейкой) с концами на периметре данного Q в качестве стороны квадрата с той же площадью, что и у Q. Заодно, предполагая стороны Q целочисленными, найдите минимальную целочисленную длину искомого отрезка.
Задачу решили:
18
всего попыток:
42
На окружности, описанной вокруг треугольника АВС, лежат точки K, L, M, отличные от вершин. При этом |AK|=|AB|, |BL|=|BC|, |CM|=|CA|. Найти наибольший угол треуголника KLM в градусах, если углы А и В треугольника АВС равны соответственно 74° и 38°.
Задачу решили:
7
всего попыток:
15
Определим g(m) как наименьшее натуральное число, которое встречается ровно в m пифагоровых тройках. Например, g(1)=3 и g(2)=5, т.к. числа 1 и 2 не встречаются ни в одной пифагоровой тройке, каждое из чисел 3 и 4 встречается ровно в одной пифагоровой тройке, а число 5 – ровно в двух: Найдите наименьшее натуральное число m, для которого g(m)>12345.
Задачу решили:
19
всего попыток:
32
Окружность, построенная на стороне АС треугольника АВС как на диаметре, пересекает стороны АВ и ВС в точках D и E соответственно. Площадь треугольника BDE относится к площади треугольника АВС как 1:2, угол CDE равен 30°. Отрезки АЕ и CD пересекаются в точке О. Найти ВО, если |СЕ|=8.
Задачу решили:
11
всего попыток:
16
В выпуклом четырехугольнике с целочисленными сторонами два противоположных угла прямые. Смежные стороны, образующие один из этих углов, равны между собой. Смежные стороны, образующие другой из этих углов, не равны между собой. При этом НОД любых трех неравных между собой сторон равен 1. Найдите минимальное значение площади, которым обладают как минимум два таких неконгруэнтных четырехугольника.
Задачу решили:
23
всего попыток:
30
На катетах треугольника АВС, равных |АС|=3 и |ВС|=4, построили во внешнюю сторону треугольника правильные треугольники ACD, BCE. Найти квадрат площади треугольника KLM, вершины которого являются серединами отрезков АС, ВС, DE соответственно.
Задачу решили:
17
всего попыток:
20
Квадраты ABCD, A1B1C1D1, A2B2C2D2 расположены по убыванию площадей следующим образом: первые 2 квадрата с совмещением сторон CD и А1В1(вершины D и А1 совмещены, вершина В1 лежит на стороне CD), вершина D2 третьего квадрата совмещена с D и А1, а сам квадрат внутри первых двух квадратов так наклонен, что вершина В1 лежит на стороне В2С2 и прямая А2В2 проходит через вершину С. Площадь первого квадрата больше площади второго квадрата в 2 раза. Известно, что все три площади имеют целочисленное значение. Найти наименьшую сумму площадей всех трех кваратов.
Задачу решили:
25
всего попыток:
26
В тупоугольном равнобедренном треугольнике АВС с основанием АС с вершины А провели высоту AH, с точки Н провели перпендикуляры НМ и НК к сторонам АВ и АС соответственно. Найти длину отрезка МК, если известно, что |АВ|=5, |АС|=8.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|