img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 46
всего попыток: 61
Задача опубликована: 29.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Последовательность целых чисел \{a_n\} такова, что a_1 = 1, a_2 = 2, и для некоторого натурального k выполняется


a_{n+k} = a_n, \quad n = 1, 2, \ldots

Также известно, что последовательность b_n = a_{n+2} - a_{n+1} + a_n обладает следующим свойством

b_{n+1} = \cfrac{1 + b_n^2}{2},\quad n = 1, 2, \ldots

Найдите значение \sum \limits_{n = 1} ^{60} a_n.

Задачу решили: 87
всего попыток: 132
Задача опубликована: 16.11.12 08:00
Прислал: pvpsaba img
Источник: Грузинская национальная олимпиада по математи...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти минимальное значение выражения: x8+y8-3x2y2, х и у - действительные числа.

Задачу решили: 69
всего попыток: 88
Задача опубликована: 30.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.

Задачу решили: 101
всего попыток: 116
Задача опубликована: 12.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: leonid (Леонид Шляпочник)

Найдите максимально возможное значение выражения

x/(x2+3)+y/(y2+3), если x>0, y>0, x·y=1, x,y - действительные числа. 

Задачу решили: 67
всего попыток: 101
Задача опубликована: 21.12.12 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: nellyk

Найдите минимальное натуральное число k такое, что при любых натуральных n, значение многочлена P(n)=7·n37+37·n7+4·k·n - делится на 259 без остатка.

Задачу решили: 65
всего попыток: 106
Задача опубликована: 18.01.13 08:00
Прислал: Timur img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Для данной функции f(x)=\frac{2013^{2x}}{2013^{2x}+2013}., найдите сумму 

S=\sum\limits_{k=1}^{2013} f(\frac{k}{2013}).

Задачу решили: 68
всего попыток: 91
Задача опубликована: 04.02.13 08:00
Прислал: mckoy img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Решить уравнение

sqrt(1+{2x})=[x2]+2[x]+3

[x] - наибольшее целое число, которое не превышает х. {x}=x-[x]

В ответе указать произведение всех возможных x.

Задачу решили: 61
всего попыток: 105
Задача опубликована: 08.02.13 08:00
Прислал: TALMON img
Источник: Израильский форум математики сайта "Апельсин"...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Назовём число "зелёным", если его можно представить как сумму последовательных (не меньше двух) натуральных чисел.

Сколько существует не зелёных чисел между 10000 и 100000 включительно?

Задачу решили: 70
всего попыток: 134
Задача опубликована: 04.03.13 08:00
Прислал: Shama img
Источник: Олимпиада Физтех-2013
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В большую коробку положили 20 коробок поменьше. В некоторые из вложенных коробок положили по 20 еще поменьше. В некоторые из этих опять положили по 20, и т.д. После этого ровно 1000 коробок оказалось с содержимым. Какое наибольшее число коробок при этом может быть пустыми?

Задачу решили: 37
всего попыток: 401
Задача опубликована: 06.03.13 08:00
Прислал: zmerch img
Вес: 1
сложность: 1 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Rep (Сергей Репин)

Сколько решений имеет уравнение

{20{13{20{13x}}}}=x2013 ?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.