img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: solomon добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 2
  
Задачу решили: 39
всего попыток: 56
Задача опубликована: 13.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Найдите все такие пары (x, y) натуральных чисел, что x + y = an, x2 + y2 = am для некоторых натуральных a, n, m. В ответе укажите количество таких пар, в которых оба числа меньше 100.

+ 2
+ЗАДАЧА 1377. Коммерческий турнир (Р. Женодаров, А. Храбров)
  
Задачу решили: 42
всего попыток: 50
Задача опубликована: 15.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: Oleg2013

В коммерческом турнире по футболу участвовало пять команд. Каждая должна была сыграть с каждой ровно один матч. В связи с финансовыми трудностями организаторы некоторые игры отменили. В итоге оказалось, что все команды набрали различное число очков и ни одна команда в графе набранных очков не имеет нуля. Какое наименьшее числом игр могло быть сыграно в турнире, если за победу начислялось три очка, за ничью — одно, за поражение — ноль?

Задачу решили: 41
всего попыток: 48
Задача опубликована: 20.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Найдите количество пар (a, b) натуральных чисел таких, что при любом натуральном n число an + bn является точной (n+1)-й степенью.

+ 4
  
Задачу решили: 36
всего попыток: 53
Задача опубликована: 22.06.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Известно, что существует число S, такое, что если a+b+c+d=S и 1/a+1/b+1/c+1/d=S (a, b, c, d отличны от нуля и единицы), то 1/(a−1)+1/(b−1)+1/(c−1)+1/(d−1)=S. Найти S2

Задачу решили: 83
всего попыток: 84
Задача опубликована: 01.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: azat

Из четырёх неравенств 2x > 70, x < 100, 4x > 25 и x > 5 два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Задачу решили: 67
всего попыток: 73
Задача опубликована: 04.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр 2016-го замечательного числа?

Задачу решили: 103
всего попыток: 105
Задача опубликована: 06.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: econom (Сергей Никитин)

Дано трехзначное число ABB, произведение цифр которого — двузначное число AC, произведение цифр этого числа равно C (здесь, как в математических ребусах, цифры в записи числа заменены буквами; одинаковым буквам соответствуют одинаковые цифры, разным — разные). Определите исходное число.

Задачу решили: 91
всего попыток: 105
Задача опубликована: 08.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: ChLa (Анатолий Виктор Лакеев Чистяков)

Вовочка кодирует фамилии числами, вот для примера:

Лермонтов - 9133
Пушкин - 61715
Медведев - 8143
Ленин - 51315
Баранов - 723

А как он записал фамилию Толстой?

+ 1
+ЗАДАЧА 1391. Гонки (М. Мурашкин)
  
Задачу решили: 33
всего попыток: 56
Задача опубликована: 18.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.

Задачу решили: 46
всего попыток: 86
Задача опубликована: 20.07.16 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100

В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины — его сын, а справа — его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.