img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 9
всего попыток: 15
Задача опубликована: 08.07.24 08:00
Прислал: TALMON img
Источник: По мотивам задачии 2668
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

За какое минимальное количество ходов можно из фигуры А змейки Рубика:

Хитрая змейка Рубика

получить фигуру Б?

Хитрая змейка Рубика

Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.

Задачу решили: 25
всего попыток: 25
Задача опубликована: 19.07.24 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Из двузначного числа, умноженного на однозначное, вычли однозначное и получили 1. Каким эбыло двузначное число?

Задачу решили: 24
всего попыток: 33
Задача опубликована: 24.07.24 08:00
Прислал: admin img
Источник: Всесибирская открытая олимпиада школьников
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Lec

Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?

Задачу решили: 21
всего попыток: 28
Задача опубликована: 26.07.24 08:00
Прислал: admin img
Источник: Всесибирская открытая олимпиада школьников
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.

Задачу решили: 9
всего попыток: 13
Задача опубликована: 29.07.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки.

Дырявый квадрат

Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.

Задачу решили: 23
всего попыток: 24
Задача опубликована: 31.07.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100

Дедушка, которому более чем 80 лет (но менее чем 100 лет). Сегодня он может сказать своим внукам, которые имеют разный возраст: "Произведение наших трех возрастов равно сумме квадратов наших возрастов". Сколько лет дедушке сегодня?

Задачу решили: 19
всего попыток: 21
Задача опубликована: 02.08.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Lec

2024 + ФУТ + БОЛ = ИГРА. Разным буквам соответствуют различные цифры. Буквы Ф, Б, И не равны нулю. Найти наибольшее значение слова ИГРА.

Задачу решили: 19
всего попыток: 21
Задача опубликована: 09.08.24 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100

В числовом ребусе
ГА+ ГА + РИН = КОС + МОС
расставить ненулевые цифры так, чтобы разность
ГАГАРИН – КОСМОС  
была наименьшей (разным буквам соответствуют разные цифры).Чему равна эта разность?

Задачу решили: 20
всего попыток: 48
Задача опубликована: 14.08.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

На полке стоит 9-томник, книги которого пронумерованы в таком порядке: 987654321. За одно перемещение можно взять любые два рядом стоящих тома и поставить их на любое другое место полки, в том числе между двумя другими томами. За какое наименьшее число таких перемещений можно получить натуральное расположение томов 123456789. 

Задачу решили: 19
всего попыток: 30
Задача опубликована: 21.08.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Для каждого натурального N>1 определены:
f(N) – произведение всех натуральных делителей N.
g(N) – логарифм f(N) по основанию Ν.

Найдите максимальное N, меньшее 12345, для которого g(N) нецело.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.