Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
9
всего попыток:
15
За какое минимальное количество ходов можно из фигуры А змейки Рубика: получить фигуру Б? Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.
Задачу решили:
25
всего попыток:
25
Из двузначного числа, умноженного на однозначное, вычли однозначное и получили 1. Каким эбыло двузначное число?
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Задачу решили:
23
всего попыток:
24
Дедушка, которому более чем 80 лет (но менее чем 100 лет). Сегодня он может сказать своим внукам, которые имеют разный возраст: "Произведение наших трех возрастов равно сумме квадратов наших возрастов". Сколько лет дедушке сегодня?
Задачу решили:
19
всего попыток:
21
2024 + ФУТ + БОЛ = ИГРА. Разным буквам соответствуют различные цифры. Буквы Ф, Б, И не равны нулю. Найти наибольшее значение слова ИГРА.
Задачу решили:
19
всего попыток:
21
В числовом ребусе
Задачу решили:
20
всего попыток:
48
На полке стоит 9-томник, книги которого пронумерованы в таком порядке: 987654321. За одно перемещение можно взять любые два рядом стоящих тома и поставить их на любое другое место полки, в том числе между двумя другими томами. За какое наименьшее число таких перемещений можно получить натуральное расположение томов 123456789.
Задачу решили:
19
всего попыток:
30
Для каждого натурального N>1 определены: Найдите максимальное N, меньшее 12345, для которого g(N) нецело.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|