![]()
Лента событий:
Lec решил задачу "Правильный 2025-угольник" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
48
Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны. А) Могли ли все рейтинги быть простыми числами? Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов? В) Какова минимальная сумма третьего и четвёртого по величине рейтингов? В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов. Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29. ![]()
Задачу решили:
18
всего попыток:
24
Вундеркинд Вася нашёл очень старый калькулятор, на котором изображались числа, но лишь на 8-ми позициях. Проверяя калькулятор на разных умножениях чисел, он вспомнил простой метод: имеется равенство N*x=111111111 (9 единиц), где х - некая цифра (N легко запоминается). Однако такое произведение не может получиться на старом калькуляторе. Такое умножение N*8 позволяло бы легко проверить находку, но к несчастью, кнопки "2","6","8" не работали! Вдруг Васю осенило проверить находку на правильность деления: М/у=N (у - тоже цифра), а заодно - и умножения N*у=М. Итак, запросто обнаружилась возможность получить работоспособный калькулятор после мелкого ремонта! Кнопку "2" Васе удалось починить почти сразу и проверить умножение (N*2)*2*2=N*8. Пусть m - количество всех разных цифр в записи числа N*8. Чему равно М+m? ![]()
Задачу решили:
20
всего попыток:
55
"Докажем", что все лошади одного цвета. Укажите номер первого ошибочного пункта в следующем изложении: Докажем по индукции, что для любого натурального числа n выполняется следующее утверждение: Любая группа из n лошадей состоит из лошадей одного цвета. 1. Для n=1 утверждение верно. Действительно, любая группа из ОДНОЙ лошади состоит из лошадей одного цвета. Покажем, что из выполнимости утверждения для какого-то n следует его выполнимость для n+1. 2. Пусть утверждение верно для какого-то n. Рассмотрим любую группу из n+1 лошадей. 3. Удалим из этой группы одну лошадь. Согласно предположению индукции, все оставшиеся n лошадей одного цвета. 4. Вернём удалённую лошадь, а вместо неё удалим другую лошадь. 5. Опять все оставшиеся n лошадей одного цвета. 6. Следовательно, все n+1 лошадь одного цвета. 7. Теорема доказана! ![]()
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте. ![]()
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте. ![]()
Задачу решили:
23
всего попыток:
67
На доске 5x5 расставлены 25 шашек реверси. За один ход разрешено перевернуть любую шашку и все соседние с ней (по стороне). Перевернутая шашка имеет другой цвет. Вначале все шашки белые. За какое наименьшее число ходов удастся получить позицию с одной чёрной шашкой? ![]()
Задачу решили:
19
всего попыток:
100
В кружки фигуры, изображенной на рисунке, расставлены натуральные числа от 1 до 49, и в каждом квадрате найдена сумма четырех чисел, расположенных в его вершинах, после чего квадраты с одинаковыми суммами закрашены одним цветом. В этой расстановке максимум одинаковых сумм равен числу зеленых клеток, то есть 7. Расставьте эти числа в другом порядке, просуммируйте четверки чисел и раскрасьте квадраты указанным образом. В ответе укажите наибольшее возможное число одноцветных квадратов. Уточним, рассматриваются только квадраты равные закрашенным. ![]()
Задачу решили:
30
всего попыток:
36
Прямоугольный параллелепипед 3x4x5 составлен из белых и черных единичных кубиков. Оказалось, что пар соседних кубиков (т. е. имеющих общую грань) разного цвета всего 48, пар соседних кубиков белого цвета всего 51. Сколько пар соседних кубиков черного цвета? ![]()
Задачу решили:
30
всего попыток:
32
Сколько вариантов решений имеет тождество: пять/шесть=5/6. Различным буквам соответствуют различные цифры, одинаковым буквам соответствуют одинаковые цифры. ![]()
Задачу решили:
34
всего попыток:
106
Как много равносторонних треугольников можно составить из 6 спичек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|