Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
115
Найдите количество комплексных чисел a+bi (a и b - целые), для которых существует комплексное число c+di (c и d - тоже целые), таких, что произведение: (a+bi)(c+di) = 16.
Задачу решили:
53
всего попыток:
58
Вася, начиная с 1000-го года, начал извлекать кубические корни числовых значений годов и обнаружил год, кубический корень которого имеет первые 10 различных цифр. Какой был этот год, если известно,что Вася именно в том году занимался этой арифметикой.
Задачу решили:
67
всего попыток:
81
Какое минимальное количество целых чисел необходимо, чтобы сумма их пятых степеней была равна 28?
Задачу решили:
81
всего попыток:
90
Найти сумму радиусов всех трех окружностей
Задачу решили:
47
всего попыток:
90
Вася продал два товара А и В за 280 руб, причем А продал дороже на 8%, а В дешевле на 8%. При этом общая стоимость обоих товаров принесла целочисленный доход n% (n>0). Найти все значения n. В ответе указать их сумму.
Задачу решили:
61
всего попыток:
85
На продолжении диагонали АС квадрата АВСD отмечена точка Е, отстоящая от вершины В на расстоянии, равном диагонали. Найти угол ЕВС в градусах.
Задачу решили:
42
всего попыток:
343
Обычный магический квадрат 3*3 можно заполнить натуральными числами 1,2,....9 так, что сумма чисел по горизонталям, вертикалям и диагоналям одинакова и равна 15. Можно ли этот квадрат заполнить разными натуральными числами, чтобы произведение чисел по горизонталям, вертикалям и диагоналям было одинаковым. Найти наименьшее значение возможного произведения.
Задачу решили:
24
всего попыток:
80
Восстановите два недостающих символа в данной последовательности букв или цифр: ВДН?ВД?БИЦ.
Задачу решили:
41
всего попыток:
108
Три игрока 1, 2 и 3 играют в морской бой. В одно время играют двое. Все игроки имеют одинаковую силу. Победитель играет с тем, кто не играл. Выигрывает в турнире тот, кто первым выиграл 2 игры подряд. Вычислите вероятность того, что победит 3-й игрок, при условии, что первая игра была между 1 и 2.
Задачу решили:
47
всего попыток:
95
Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|