Лента событий:
Sam777e решил задачу "Параллелограмм и две биссектрисы - 2" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
438
всего попыток:
482
Площадь крышки коробки равна 120 см2, её передней стенки — 80 см2, а боковой стенки — 96 см2. Сколько см3 составляет объём коробки?
Задачу решили:
135
всего попыток:
195
В сплошном шаре сверлится вертикальное цилиндрическое отверстие, ось которого проходит через центр шара. Высота полученного тела равна 6 см. Сколько см3 составляет его объём? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
164
всего попыток:
421
На какое наименьшее число равных пирамид можно разрезать куб?
Задачу решили:
155
всего попыток:
375
Из чёрных и белых кубиков размера 1х1х1 сложили куб размера 3х3х3. Поверхность куба оказалась окрашена в чёрный цвет ровно наполовину. Какое наибольшее число чёрных кубиков могло быть использовано?
Задачу решили:
123
всего попыток:
176
Каждую грань куба разбили на 4 равных квадрата, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.
Задачу решили:
65
всего попыток:
179
Сколько процентов составляет вероятность того, что среди 5 (случайно выбранных) точек на сфере найдутся 4, лежащие на одной замкнутой полусфере? (Замкнутая полусфера — это полусфера, включающая собственную границу.)
Задачу решили:
89
всего попыток:
331
В трёхмерный космический бой играют в параллелепипеде 5×6×7, состоящем из 210 кубических ячеек. Сколько ячеек пересекает большая диагональ параллелепипеда?
Задачу решили:
51
всего попыток:
141
Найдите максимальное целочисленное значение длины диагонали многогранника, если сумма длин его рёбер равна 2012.
Задачу решили:
21
всего попыток:
129
A - основание 4-угольной пирамиды. B, C, D, E - её боковые грани. B и D - две противоположные боковые грани (так же как и C и E). Их углы с основанием A: α - угол между гранью B и основанием A. β - угол между гранью D и основанием A. x - сумма углов α и β, выраженных в градусах. Какое максимальное целое значение может принимать x?
Задачу решили:
28
всего попыток:
94
Найдите максимальное количество плоскостей, каждая из которых равноудалена от некоторых четырёх точек из заданных 2014-ти точек пространства, расположенных в общем положении.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|