Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
659
В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров. Рассмотрим три дерева, стояших в точках A, B и C. Какое минимально возможное положительное значение угла ABC в градусах?
Задачу решили:
62
всего попыток:
203
Прямая перпендикулярная хорде сегмента, делит хорду в отношении 1:4, а дугу - в отношении 1:2. Найти косинус центрального угла, опирающегося на эту дугу.
Задачу решили:
45
всего попыток:
196
Рассмотрим множество парабол, уравнения которых имеют вид y=ax²+b, где a и b принимают все целые значения от 1 до 10 включительно. Т.е. всего 100 парабол. Сколько в этом множестве пар подобных парабол?
Задачу решили:
38
всего попыток:
41
В остроугольном треугольнике ABC на стороне BC как на диаметре построили окружность O. Через точку P на стороне AB перпендикулярно AB провели прямую, пересекающую AC в точке Q, причем |AP| = 10 и площадь треугольника APQ в 4 раза меньше площади треугольника ABC. Найдите длину отрезка касательной AT, проведенной из точки A к окружности O.
Задачу решили:
31
всего попыток:
64
В треугольнике ABC известны длины всех его сторон: |AB| = 21, |BC| = 42, |CA| = 35. Из точек B и C опущены высоты BD и CE, F точка пересечения прямых BD и CE. Прямая, проходящая через центр вписанной окружности треугольника ABC и перпендикулярная BC, пересекает биссектрису угла BFC в точке G. Из G на BF опущена высота GH. Найдите |FH|2.
Задачу решили:
39
всего попыток:
76
В треугольнике ABC точка O - центр описанной окружности, ∠AOB = ∠BOC = 20°. Точки P, Q, R - середины отрезков OA, OB, OC соответственно. Прямые AB и OC пересекаются в точке D. Пусть OD = 4, а площадь пятиугольника ADRQP равна x. Найдите x2.
Задачу решили:
33
всего попыток:
99
Окружность S и лежащая на ней точка P(a,b) обладают следующими свойствами: (i) Касательная в точке P проходит через начало координат. Для точки P(a,b) обозначим за M и m максимум и минимум выражения Найдите 36M + 27m2.
Задачу решили:
39
всего попыток:
61
На окружности O взяты точки A и B. Касательные, построенные в точках A и B, пересекаются в точке C. На продолжении отрезка CA за точку A выбрана точка D так, что |AD| = 30, а на продолжении отрезка BC за точку C - точка E так, что |BE| = 60. Прямая BA пересекает отрезок DE в точке P. Зная, что |DE| = 66, найдите длину отрезка DP.
Задачу решили:
34
всего попыток:
48
В тупоугольном равнобедренном треугольнике AB1B2 известны стороны |AB1| = |AB2| = 8. Проходящие через вершину A прямые li (i = 1,2) пересекают окружности с центрами Bi и радиусами 6 в точках Pi, Qi. Описанная окружность треугольника AP1P2 имеет радиус 2, |AQ1| = 9, |AQ2| = 11. Найдите |Q1Q2|2.
Задачу решили:
39
всего попыток:
128
Биссектриса угла C треугольника ABC пересекает сторону AB в точке D. Прямая, проведенная через точку B параллельно CD, пересекается с прямой AC в точке E. |AD| = 4, |BD| = 6, |BE| = 15. Прямая BE пересекает внешнюю биссектрису угла A треугольника ABC в точке P. Найдите (|PB| - |AB|)2.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|