![]()
Лента событий:
Lec решил задачу "Правильный 2025-угольник" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
19
всего попыток:
23
В координатной плоскости Oxy задана парабола y=x2, на которой отмечены все ее точки с целыми координатами. Проведены всевозможные хорды параболы, с концами в отмеченных точках. Расположим хорды в порядке возрастания их длины, без повторений, и рассмотрим последовательность квадратов длин этих хорд. Начало последовательности выглядит так: 2, 4, 10, 16, 18, 20, 26, …. На рисунке изображена хорда AB, которой соответствует а12 = 42+82 = 80. Найдите 64-ый член последовательности. ![]()
Задачу решили:
6
всего попыток:
8
В параллелограмме АВCD на стороне ВС отмечена точка К так, что АК является биссектрисой угла А, отрезок KD является биссектрисой угла АКС. Длина отрезка КС равна целому числу, отношение длины отрезка ВК к длине отрезка КС равно целому числу. Найдите миллиардную (по возрастанию) целочисленную площадь параллелограмма. ![]()
Задачу решили:
13
всего попыток:
23
Рассмотрим треугольную сетку из 1+2+3+...+n точек, покрашенных в три цвета, расположенных в виде равностороннего треугольника с n точками на стороне. На рисунке изображён пример такой сетки при n=4. Сетка обладает таким свойством: ни одна тройка точек одного цвета не образует равносторонний треугольник. Найдите максимальный n, при котором это возможно. ![]()
Задачу решили:
5
всего попыток:
7
Фигура «Ёлочка» сложена из полного набора пентамино, как показано на рисунке, и украшена замкнутой гирляндой из 12 лампочек. Гирлянда является маршрутом козлотура, который, перескакивая по лампочкам "ходами козлотура" (см. рисунок), побывав ровно по одному разу в одной из клеток каждого пентамино, возвращается к исходной лампочке. Сколько всего существует таких замкнутых маршрутов козлотура? ![]()
Задачу решили:
5
всего попыток:
12
Рассмотрим треугольную сетку из 1+2+3+...+n точек, расположенных в виде равностороннего треугольника с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один равносторонний треугольник (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+f(8)+f(9). ![]()
Задачу решили:
5
всего попыток:
7
Рассмотрим квадратную сетку из n2 точек, расположенных в виде квадрата с n точками на стороне. Определим f(n) как максимально возможное количество точек этой сетки, не образующих ни один квадрат (любого наклона). Найдите f(2)+f(3)+f(4)+f(5)+f(6)+f(7).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|