Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
135
всего попыток:
315
Найдите последние три цифры числа .
Задачу решили:
226
всего попыток:
250
Водитель автомашины грубо нарушил правила дорожного движения, чему свидетелями стали три студента-математика. Номер они не запомнили, но сообщили следующее: 1) номер был четырехзначный; 2) две первые цифры были одинаковы; 3) две последние цифры также были одинаковы; 4) это четырёхзначное число являлось точным квадратом. Помогите сотрудникам автоинспекции понять математиков и определите номер машины.
Задачу решили:
120
всего попыток:
172
Площадь сечения куба, которое представляет собой правильный шестиугольник, равна √3. Найдите площадь полной поверхности куба.
Задачу решили:
103
всего попыток:
222
В треугольнике проведены две медианы с длинами 20 и 30, угол между которыми равен 2·arctg(1/2). Найти площадь треугольника.
Задачу решили:
93
всего попыток:
174
Биссектрисы углов трапеции делят каждое из её оснований на три равные части. Найдите среднюю линию трапеции, если её высота равна . (Трапеция — это четырёхугольник, у которого ровно одна пара противолежащих сторон параллельна.)
Задачу решили:
90
всего попыток:
436
На территории завода четыре асфальтовые дорожки длиной 10 м каждая образуют квадрат. В двух соседних вершинах квадрата стоят двое рабочих, держа на плечах десятиметровую трубу. Им необходимо, передвигаясь по дорожкам и не выпуская при этом трубы, поменяться местами. Из соображений безопасности разрешается идти со скоростью не больше 1 м/с. Внутри квадрата нет никаких сооружений, создающих помехи при переноске трубы. За какое наименьшее время рабочие могут справиться с заданием? (Ответ округлите до ближайшего целого числа.)
Задачу решили:
79
всего попыток:
153
Какое наибольшее количество простых чисел подряд найдётся среди значений выражения n2−13n+47, если n пробегает все целые числа от −20102010 до 20102010?
Задачу решили:
68
всего попыток:
156
Найдите такое наименьшее натуральное число n, чтобы в любом множестве из n натуральных чисел, не превосходящих 2010, можно было выбрать два числа, одно из которых делится на другое.
Задачу решили:
74
всего попыток:
108
Мы с подружками поехали на сбор хлопка на 33 дня. Мы имеем право ровно на 6 выходных из этих 33 дней. Сколькими способами можно составить расписание выходных и рабочих дней таким образом, чтобы на каждые 12 подряд идущих дней приходилось не менее трёх выходных?
Задачу решили:
46
всего попыток:
57
Существуют ли такие натуральные числа x и y, что все дроби x/y, (x+1)/y, x/(y+1) и (x+1)/(y+1) являются сократимыми?
(Как всегда, односложные ответы не принимаются. Пожалуйста, не присылайте файлов.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|