Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
145
всего попыток:
245
В машинном слове 16 бит (бит — это 0 или 1). Сколько существует слов, в которых никакие две единицы не идут подряд?
Задачу решили:
97
всего попыток:
302
Маршрут автобуса состоит из 12 остановок (включая конечные). Автобус вмещает не более 20 пассажиров. Однажды автобус проехал весь маршрут из конца в конец, останавливаясь на всех остановках. Известно, что не было двух пассажиров, которые вошли, а потом и вышли на одной и той же остановке. Какое наибольшее число пассажиров могло быть перевезено автобусом при этих условиях?
Задачу решили:
205
всего попыток:
487
Какое минимальное число выстрелов нужно сделать в игре "морской бой", чтобы наверняка попасть в "крейсер"? (В "морской бой" играют в квадрате 10×10 клеток, "крейсер" — это прямоугольник 1×4 клетки, а одним выстрелом поражается одна клетка.)
Задачу решили:
94
всего попыток:
199
Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?
Задачу решили:
161
всего попыток:
191
Длины сторон остроугольного треугольника — последовательные целые числа. На среднюю по длине сторону опущена высота, которая делит её на некоторые отрезки. Найти разность их длин. (Точнее, её абсолютную величину.)
Задачу решили:
134
всего попыток:
222
Найти наименьшее значение r, при котором справедливо утверждение: любая замкнутая плоская ломаная длины 60 лежит в круге радиуса r.
Задачу решили:
91
всего попыток:
208
Погремушка состоит из синего кольца и надетых на него двенадцати шариков: девяти красных и трёх жёлтых. Сколько может быть выпущено различных погремушек? (Погремушка не меняется при её переворачивании и передвижении шариков по кольцу.)
Задачу решили:
154
всего попыток:
405
В некоторых клетках таблицы 100×100 стоят крестики. Каждый крестик является единственным либо в строке, либо в столбце. Какое наибольшее количество крестиков может стоять в таблице?
Задачу решили:
105
всего попыток:
136
Как посадить 9 яблонь в 10 рядов по 3 яблони в каждом? (Для особо придирчивых: сажать ряды из 4 и более яблонь не разрешается!)
(Пожалуйста, присылайте решения только в виде файла!!!)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|