Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
187
всего попыток:
229
В примере на сложение шестизначных чисел каждую цифру заменили на букву, после чего получилось: DONALD+GERALD=ROBERT (разным цифрам соответствуют разные буквы, одинаковым цифрам — одинаковые буквы). Чему равна сумма?
(По непроверенной информации, Генри Форд в качестве вступительного экзамена на должность инженера предлагал решить эту задачу и принимал только тех, кто укладывался в 15 минут.)
Задачу решили:
72
всего попыток:
156
Дурацкое домино похоже на обычное, но состоит из 36 костей, на которых написаны всевозможные различные пары целых чисел от 0 до 7: 0-0, 0-1, 0-2,...,0-7, 1-1, 1-2,... Найдите наименьшее число цепочек, в которые можно выложить все кости дурацкого домино по обычному правилу — кости в цепочке прилегают друг к другу одинаковыми числами, например: 0-1, 1-1, 1-3, 3-7, 7-4. (Обычное домино состоит из 28 костей, на которых написаны все различные пары целых чисел от 0 до 6, все его кости можно выложить в одну цепочку.)
Задачу решили:
100
всего попыток:
399
Куб 4×4×4 сложен из 64 одинаковых по размеру кубиков, среди которых есть прозрачные. Несмотря на это, если на куб смотреть со стороны любой его грани, то он выглядит как сплошной квадрат 4×4. Найдите наибольшее число прозрачных кубиков. (Смотреть нужно издалека вдоль линии, перпендикулярной к грани и проходящей через её центр.)
Задачу решили:
80
всего попыток:
576
Какое наименьшее число матчей нужно провести, чтобы из 24 теннисистов гарантированно определить двух сильнейших, т.е. честно разыграть между всеми участниками I и II места? (Любые два участника играют в разную силу; в каждом матче побеждает сильнейший; если А сильнее Б, а Б сильнее В, то А сильнее В.)
Задачу решили:
143
всего попыток:
264
У Вас есть 8 одинаковых по размеру и внешнему виду шариков, среди которых 4 алюминиевых и 4 дюралевых. Различить их можно только по весу. За какое минимальное число взвешиваний на чашечных весах без гирь Вам удастся найти среди них два шарика, сделанных из разных металлов? (Массы всех шариков из одного и того же металла совпадают.)
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Задачу решили:
111
всего попыток:
137
Возьмём четырёхзначное число, у которого не все четыре цифры одинаковые, и составим из него два других: в первом выпишем цифры числа в порядке убывания, во втором — в порядке возрастания. Вычтем меньшее число из большего. Продолжая переставлять цифры и вычитать, замечаем, что на одном из шагов полученное число "зацикливает" процесс. Что это за число? (Если вдруг на каком-то шаге получается трёхзначное число, то слева к нему приписываем нуль.)
Задачу решили:
113
всего попыток:
437
Четыре друга — Алёша, Боря, Валера и Гриша — бегали на лыжах по кругу. Алёша бежал быстрее Бори, Боря быстрее Валеры, а Валера быстрее Гриши. Стартовали и финишировали друзья одновременно, но Алёша 1 раз обогнал Борю, Боря 1 раз обогнал Валеру, а Валера 1 раз обогнал Гришу. Сколько раз Алёша обогнал Гришу?
Задачу решили:
115
всего попыток:
154
Найдите минимальное натуральное число, которое уменьшается в 19 раз, если в его десятичной записи поменять местами первую и третью цифры.
Задачу решили:
164
всего попыток:
347
Сумма нескольких натуральных чисел равна 25. Найдите наибольшее возможное значение их произведения.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|