Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
76
всего попыток:
113
Даны точки в пространстве с целыми координатами x, y, z, причём 0<x<2010, 0<y<2010, 0<z<2010. Для каждой такой точки напишем сумму ее наибольшей и наименьшей координаты. Чему равна сумма всех написанных чисел?
Задачу решили:
123
всего попыток:
270
На какое наибольшее количество нулей может оканчиваться произведение трёх натуральных чисел, сумма которых равна 2003?
Задачу решили:
96
всего попыток:
418
За круглым столом сидят 30 человек. Некоторые из них всегда говорят правду, а остальные всегда лгут. У каждого спросили: «Есть ли среди ваших соседей лжец?», и каждый ответил: «Да». Сколько лжецов могло быть за столом? В ответе напишите сумму всех возможных значений количества лжецов.
Задачу решили:
78
всего попыток:
189
Пусть x=1−1/a−1/b−1/c−1/d и x>0, где a, b, c, d — натуральные числа. Найдите наибольшее значение 1/x.
Задачу решили:
95
всего попыток:
157
Представим сумму как несократимую дробь. На сколько нулей оканчивается знаменатель этой дроби?
Задачу решили:
86
всего попыток:
183
На острове находится военная база. Каждый из солдат, служащих на этой базе, однажды сделал два заявления: 1) на базе нет и ста солдат, которые стреляют лучше меня; 2) по крайней мере тысяча солдат на базе владеют приёмами рукопашного боя лучше, чем я. Известно, что каждый из солдат либо всегда говорит правду, либо всегда лжёт. Кроме того, меткость стрельбы у всех солдат разная, как и уровень владения рукопашным боем. Сколько солдат служат на базе?
Задачу решили:
90
всего попыток:
286
Двузначное число записали три раза подряд. Получилось шестизначное число. Какое наибольшее количество натуральных делителей (включая единицу и само число) может иметь это шестизначное число?
Задачу решили:
113
всего попыток:
135
Найдите наименьшее количество натуральных чисел, сумма квадратов которых равна 1995.
Задачу решили:
63
всего попыток:
184
Чему равно максимальное количество подряд идущих членов последовательности xn=n²+2010, наибольший общий делитель которых больше 1?
Задачу решили:
77
всего попыток:
112
Каспениада (в дальнейшим для краткости именуемая Касей) задумала натуральное число и по секрету сообщила его Аппроксидону (Прокси). Йегиртон (Гиря) тоже задумал натуральное число и тоже по секрету сообщил его Прокси. Прокси вычислил сумму и произведение этих двух чисел, и один из результатов сообщил Касе и Гире. Результат был 2010. Узнав результат, Гиря сказал, что не знает, какое число задумала Кася. Услышав это, Кася сказала, что не знает, какое число задумал Гиря. Какое число задумала Кася?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|