Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
51
всего попыток:
105
В треугольник ABC со сторонами AB=62, BC=962, AC=960, будем вписывать n окружностей одинакового радиуса (n от 1 до бесконечности, натуральное) так, что все они касаются стороны AC, соседних окружностей, а крайние окружности касаются сторон AB и BC соответственно. (см.рис.). Существует конечная последовательность k натуральных чисел ai {a1,a2,a3,...,ak} таких, что если вписывать ai окружностей в данный треугольник, у полученных окружностей радиусы будут натуральными числами. Найдите эту последовательность. В ответе укажите сумму всех ее членов .
Задачу решили:
49
всего попыток:
111
Через каждую вершину единичного куба проходит плоскость, все восемь плоскостей параллельны друг другу, а расстояния между соседними плоскостями равны. Найдите квадрат этого расстояния.
Задачу решили:
36
всего попыток:
94
Рассмотрим множество квадратов для первых 40 натуральных чисел: S={12,22,32,42,..., 392,402}. Для каждого из чисел 1<n<41, рассмотрим все подмножества S, которые состоят ровно из n элементов. Если при фиксированном n, в каждом из подмножеств длины n найдутся хотя бы два элемента x и y такие, что x+y =p простое число, будем называть число n - квадратнопростым. Найдите минимальное квадратнопростое число n для данного множества S. (Например для множества S={1, 4, 9}, n=2: {1, 4}, {1, 9}, {4, 9}; n=3: {1, 4, 9}, и минимальное квадратнопростое число n=3).
Задачу решили:
89
всего попыток:
100
Для натурального n>3 будем обозначать через n? ( n-вопросиал) произведение всех простых чисел, меньших n. Найдите сумму решений уравнения n?=2n+16.
Задачу решили:
58
всего попыток:
81
На острове живёт 2013 аборигенов, каждый из которых либо лжец (лжецы всегда лгут), либо рыцарь (рыцари всегда говорят правду). Некоторые аборигены знакомы друг с другом, причём каждый лжец имеет знакомого среди рыцарей, а каждый рыцарь знакомого среди лжецов. Каждый абориген сделал заявление: "Среди моих знакомых лжецов больше, чем рыцарей". Затем правитель острова казнил одного из аборигенов, и после этого каждый абориген сделал заявление: "Среди моих знакомых рыцарей больше, чем лжецов". Сколько рыцарей было на острове изначально?
Задачу решили:
41
всего попыток:
113
Доска 16х16 разделена на квадраты со стороной длины 1. Сколько существует различных отрезков целочисленной длины с концами в узлах доски? (Поворачивать доску нельзя, т.е. для доски 1х1 ответ - 4.)
Задачу решили:
27
всего попыток:
144
Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.
Задачу решили:
49
всего попыток:
61
Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.
Задачу решили:
51
всего попыток:
123
В трехмерном кубе 8х8х8 играют в крестики-нолики. Сколько существует прямых, на которых могут лежать 8 крестиков в ряд?
Задачу решили:
38
всего попыток:
117
У бедного мальчика Саши всего 300 монет, и к тому же ровно одна из них фальшивая (легче настоящей). У жадного мальчика Кости есть весы, но за каждое взвешивание он берет с Саши плату: два рубля, если перевесила левая чашка, и один рубль при любом другом исходе. Какую наименьшую сумму должен приготовить Саша, чтобы заведомо определить фальшивую монету с помощью Костиных весов?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|