img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 59
Задача опубликована: 30.07.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

В последовательности x_1, x_2, \ldots, x_{10} четыре единицы, три двойки и три тройки. Пусть z_1 = x_1 иz_{n+1} = \left(1 + \frac{1}{n}\right)^2 \cdot 
\cfrac{z_n x_{n+1}}{z_n + x_{n + 1}}, \quad n = 1, 2, \ldots, 9.

Найдите наибольшее значение z_{10}.

(Ответ дробный)
Задачу решили: 65
всего попыток: 176
Задача опубликована: 03.08.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Найдите количество упорядоченных пар целых чисел (x,y), удовлетворяющих условию 
4x^3 - 5x^2y + 10xy^2 + 12y^3 - 108x - 81y = 0,
и таких, что x и y по модулю не превосходят 1000.

Задачу решили: 43
всего попыток: 112
Задача опубликована: 21.09.12 08:00
Прислал: bbny img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Подмножество S действительных чисел строится следующим образом:

1. Число 1 принадлежит S

2. Для любой пары чисел a и b из S числа a+b, a-b, a*b, a/b (b ≠ 0), sqrt(a) (a >= 0) принадлежат S

Теперь для каждого числа из S определим ранг (целое неотрицательное число):

Будем говорить, что числа -1, 0 и 1 имеют ранг 0 в S, числа ранга k и ниже образуют подмножество Sk множества S, а числа, получаемые из пар чисел Sk пятью вышеуказанными бинарными и унарными операциями и не принадлежащие Sk, имеют ранг k+1.

Т.е. ранг - это минимальный номер шага, на котором мы можем получить число из исходного множества S0 = {-1,0,1}

Найдите ранг числа


number.gif

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 80
всего попыток: 104
Задача опубликована: 14.11.12 08:00
Прислал: pvpsaba img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Площадь трапеции равна 50, а сумма ее диагоналей - 20. Найти квадрат высоты трапеции.

Задачу решили: 72
всего попыток: 165
Задача опубликована: 23.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).

Задачу решили: 44
всего попыток: 98
Задача опубликована: 25.02.13 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

D, E, F - это точки касания вписанной в треугольник ΔABC окружности с центром в т .O (см.рис.). Найдите площадь треугольника ΔDEF, если известно, что площадь треугольника ΔABC=264, r=6 - радиус вписанной окружности ΔABC, R=65/3 - радиус описанной около ΔABC окружности.

pl02.jpg

Задачу решили: 89
всего попыток: 153
Задача опубликована: 08.03.13 08:00
Прислал: Freeplay img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Меньшая окружность касается большей внутренним образом, а также касается некоторого её радиуса в середине. Найдите отношение радиусов меньшей и большей окружности.

Задачу решили: 58
всего попыток: 78
Задача опубликована: 20.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Диагонали вписанного четырехугольника ABCD пересекаются в точке P. Центры описанных окружностей треугольников APB и CPD лежат на описанной окружности ABCD. Найдите угол между прямыми AC и BD (APD).

Задачу решили: 35
всего попыток: 200
Задача опубликована: 27.03.13 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В некоторых геометрических построениях с помощью циркуля и линейки можно обойтись одним циркулем или одной линейкой.

Рассмотрим множество всех таких натуральных чисел n>1, которые удовлетворяют следующему условию: с помощью одной линейки можно разделить сторону заданного (уже нарисованного) прямоугольника на n равных частей.

Какие натуральные числа 1<n<22 принадлежат этому множеству? Укажите в ответе их сумму.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.