img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 896
всего попыток: 1663
Задача опубликована: 04.03.09 15:51
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Serj129 (Сергей Панченко)

Отец и сын катаются на коньках по кругу. Время от времени отец обгоняет сына. После того, как сын переменил направление своего движения на противоположное, они стали встречаться в 5 раз чаще. На сколько процентов скорость отца больше скорости сына?

Задачу решили: 386
всего попыток: 1340
Задача опубликована: 12.03.09 12:58
Прислал: demiurgos img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: IrineK (Ирина Каминкова)

При каком n в классе из n учеников вероятность наличия двух учеников, которые празднуют свои дни рождения в один и тот же день, наиболее близка к 1/2?

Задачу решили: 764
всего попыток: 1940
Задача опубликована: 20.03.09 23:20
Прислал: demiurgos img
Источник: Собеседование в 57-й школег. Москвы
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Lisney_Anton (Антон Лисный)

В ряд стоят 30 стульев. Время от времени подходит человек и садится на один из свободных стульев. При этом один из его соседей (если такие есть) встает и уходит. Какое наибольшее число стульев может оказаться занятым, если сначала все они свободны?

Задачу решили: 655
всего попыток: 2445
Задача опубликована: 26.03.09 17:09
Прислал: demiurgos img
Источник: Собеседование в 57-й школе г. Москвы
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: John (Евгений Ларьков)

В общежитии 30 жилых комнат. Из года в год первого апреля жители этих комнат повторяют один и тот же розыгрыш. Они просыпаются по очереди и, если дверь их собственной комнаты на месте, то они снимают дверь какой-нибудь другой из этих комнат и уносят её в подвал. Если же дверь их комнаты унесена, то они забирают из подвала любую дверь и вешают её на место своей. (Если ни одно из этих действий невозможно, то они не делают ничего). Какое наибольшее количество дверей может оказаться в подвале после того, как все проснутся?

Задачу решили: 226
всего попыток: 551
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: Всероссийская математическая олимпиада школьн...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Каждое из 2009 чисел равно 1, 0 или -1. Какое наименьшее значение может принимать сумма произведений всех пар, составленных из этих чисел?

(Предлагалась на "Первом математическом")
Задачу решили: 171
всего попыток: 639
Задача опубликована: 26.04.09 15:18
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

Саша выставляет на пустую шахматную доску ладьи: первую — куда захочет, а каждую следующую ставит так, чтобы она побила нечетное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 231
всего попыток: 718
Задача опубликована: 06.05.09 15:33
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

На какое минимальное число тетраэдров можно разрезать куб? (Тетраэдр — это треугольная пирамида.)

Задачу решили: 107
всего попыток: 499
Задача опубликована: 08.05.09 23:16
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)

Задачу решили: 559
всего попыток: 1600
Задача опубликована: 12.05.09 14:28
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: NikitaKozlov77... (Никита Козлов)

В спешке не пропустить начало нового сериала, семья ночью подошла к мосту. Папа может перейти его за 1 минуту, мама — за 2, сынишка — за 5, а бабушка — за 10 минут. У них есть один фонарик, а мост выдерживает только двоих. За сколько минут все они смогут его перейти при лучшей организации своего движения?

Условия для особо придирчивых: Если переходят двое, то они идут с меньшей из скоростей. Идти по мосту без фонарика нельзя. Светить издали нельзя. Носить друг друга на руках нельзя. Бросать фонарик нельзя.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.