img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 83
всего попыток: 250
Задача опубликована: 07.02.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Alexandroppolu... (Александр Икс)

В какое максимальное число цветов можно раскрасить клетки доски 10×10 так, чтобы у каждой клетки среди ее соседей (по стороне) были хотя бы две клетки, окрашенные в тот же цвет?

Задачу решили: 93
всего попыток: 215
Задача опубликована: 21.03.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Rep (Сергей Репин)

По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?

Задачу решили: 64
всего попыток: 209
Задача опубликована: 27.04.11 08:00
Прислал: Primazon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань куба разбили на 16 равных квадратиков, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 44
всего попыток: 86
Задача опубликована: 03.06.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Число называется оранжевым, если оно образуется при выписывании друг за другом без пробелов (в десятичной системе счисления) всех натуральных чисел от 1 до N, где N>1. Например, числа 12345 и 123456789101112131415 являются оранжевыми, а 1 — нет. Сколько решений в оранжевых числах имеет уравнение xy=z?

Задачу решили: 174
всего попыток: 252
Задача опубликована: 08.07.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Шла торговка на рынок продавать пирожки. По дороге она проголодалась и съела сначала пирожок и половину остатка, затем ещё пирожок и пол-остатка, затем ещё пирожок и пол-остатка. А затем по дороге воры украли 7 пирожков и пол-остатка. На рынок торговка принесла 1 пирожок. Сколько пирожков было?

Задачу решили: 82
всего попыток: 206
Задача опубликована: 22.07.11 08:00
Прислал: demiurgos img
Источник: по мотивам задачи, присланной Ulkas
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)

Задачу решили: 87
всего попыток: 123
Задача опубликована: 22.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.

Задачу решили: 33
всего попыток: 76
Задача опубликована: 31.08.11 08:00
Прислал: Sam777e img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Ученику задали напечатать на пишущей машинке подряд первые 2011 натуральных чисел — каждое следующее число на новой строке. Но у пишущей машинки оказалась сломана клавиша с символом 2; и ученик решил пропускать все числа, в записи которых требуется эта клавиша, но напечатать 2011 чисел. Однако он был трудоголиком, вошёл во вкус дела и напечатал 2011·1020 чисел. Какое число было напечатано на последней строке?

Задачу решили: 48
всего попыток: 135
Задача опубликована: 21.09.11 08:00
Прислал: zmerch img
Источник: Задачи 550, 573
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: levvol

Каждую грань параллелепипеда 3х5х7 разбили на единичные квадратики, которые раскрасили в красный, синий и белый цвета так, что квадраты, имеющие общую сторону, оказались окрашены в разные цвета. Найдите наибольшее возможное число красных квадратов.

Задачу решили: 86
всего попыток: 111
Задача опубликована: 19.10.11 08:00
Прислал: demiurgos img
Источник: А.В.Спивак, Математический кружок
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

В клетках шахматной доски 8×8 расставлены n фишек так, что любой квадрат 3×3 содержит в точности одну фишку. Найдите произведение наибольшего и наименьшего значений n.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.