Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
212
Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.
Задачу решили:
102
всего попыток:
288
Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?
Задачу решили:
105
всего попыток:
187
Если от натурального числа отнять квадрат суммы его цифр, какое наименьшее число может получиться?
Задачу решили:
86
всего попыток:
110
В квадратную таблицу n×n записаны все натуральные числа от 1 до n2 в следующем порядке: числа от 1 до n — в первой сверху строке слева направо, числа от n+1 до 2n — во второй сверху строке слева направо, и т. д. Выберем n чисел из этой таблицы так, чтобы из каждой строки было выбрано ровно 1 число и из каждого столбца было выбрано ровно 1 число. Какие значения может принимать сумма всех выбранных нами чисел? В ответе запишите сумму всех возможных значений при n=2011.
Задачу решили:
46
всего попыток:
155
Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.
Задачу решили:
87
всего попыток:
127
В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?
Задачу решили:
109
всего попыток:
131
В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n?
Задачу решили:
59
всего попыток:
154
Какое наибольшее число точек можно выбрать на отрезке [0;1] так, чтобы на любом отрезке [a;b], который является частью отрезка [0;1], было не больше 1+100(b–a)2 точек?
Задачу решили:
129
всего попыток:
209
Найдите наименьшее значение выражения при .
Задачу решили:
70
всего попыток:
200
Найдите максимальное натуральное число N такое, что число N! представимо в виде произведения N−3 последовательных натуральных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|