Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
83
всего попыток:
104
Пусть I — точка пересечения биссектрис прямоугольного треугольника ABC. Обозначим через K, L и M точки, симметричные точке I относительно сторон треугольника ABC. Окружность, описанная около треугольника KLM, проходит через вершину B. Сколько градусов составляет угол ABC?
Задачу решили:
104
всего попыток:
232
Сколько решений в целых (необязательно положительных) числах имеет уравнение xy/(x+y)=2011?
Задачу решили:
79
всего попыток:
168
Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?
Задачу решили:
75
всего попыток:
127
Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).
Задачу решили:
65
всего попыток:
99
Соревнование, в котором принимали участие n>1 игроков длилось k дней. Каждый день каждый игрок получал от 1 до n очков, причём все результаты были различны. По окончании соревнования оказалось, что все игроки получили по 26 очков. Найдите все пары (n,k) для которых такое возможно. В ответе укажите количество этих пар.
Задачу решили:
64
всего попыток:
182
Каждую клетку прямоугольника 6×8 раскрасили в один из 12 различных цветов. Пара цветов называется плохой, если найдутся две клетки, имеющие общую сторону и закрашенные этими цветами. Найдите наименьшее число плохих пар.
Задачу решили:
48
всего попыток:
206
Вычислите минимум функции , где — такие неотрицательные действительные числа, что , а . В ответе укажите значение , округлённое до ближайшего целого.
Задачу решили:
83
всего попыток:
126
Сколько различных действительных решений имеет уравнение: ? (Как обычно, — это целая часть числа x, а — его дробная часть.)
Задачу решили:
26
всего попыток:
31
Сколькими способами можно записать все различные целые числа от 1 до n в одну строку так, чтобы выполнялось следующее условие: где-то после любого числа k, написанного не на последнем месте, должно встретиться хотя бы одно из чисел k−1 и k+1?
Задачу решили:
134
всего попыток:
252
Найдите (не пользуясь компьютером!) остаток от деления числа 9876543211234567689 на 7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|