img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 88
всего попыток: 111
Задача опубликована: 05.08.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Пусть — многочлен от переменной с чётными целыми коэффициентами, и   — такие целые числа, что . Найдите наибольшее возможное значение разности .

Задачу решили: 37
всего попыток: 310
Задача опубликована: 10.08.11 08:00
Прислал: Vkorsukov img
Источник: Задача 607
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В шахматной композиции (задачах) есть раздел  сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций,  полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.

Задачу решили: 95
всего попыток: 117
Задача опубликована: 12.08.11 08:00
Прислала: Nana img
Источник: Новосибирская областная олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Хорда удалена от центра окружности на расстояние 60. В каждый из двух полученных сегментов вписан квадрат так, что пара его соседних вершин лежит на хорде, а другая пара вершин — на соответствующей дуге окружности. Найдите разность длин сторон квадратов.

Задачу решили: 101
всего попыток: 154
Задача опубликована: 02.09.11 08:00
Прислал: demiurgos img
Источник: problems.ru
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

На окружности отмечены четыре точки ABи D так, что хорды AC и BD перпендикулярны друг другу, а AB=4, BC=8 и CD=13. Найдите площадь четырёхугольника ABCD.

Задачу решили: 52
всего попыток: 359
Задача опубликована: 07.09.11 08:00
Прислал: Vkorsukov img
Источник: Задача 628
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

На окружности отмечены четыре точки A, B, C и D так, что хорды AC и BD перпендикулярны друг другу, а AB=4 и CD=13. Сколько различных целочисленных значений может принимать площадь четырёхугольника ABCD с такими условиями?

+ 35
  
Задачу решили: 71
всего попыток: 99
Задача опубликована: 12.09.11 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Timur

В одном шотландском городке стояла школа, в которой учились ровно 12345678910  школьников. У каждого из них был шкаф для одежды — всего 12345678910 шкафов, причём шкафы были пронумерованы числами от 1 до 12345678910. А ещё в этой школе жили привидения — ровно 12345678910 привидений. Каждый школьник, уходя из школы, запирал свой шкаф, а ночью привидения начинали играть со шкафами, то отпирая, то запирая их. Однажды вечером школьники, как обычно, оставили запертыми все шкафы. Ровно в полночь появились привидения. Сначала 1-ое привидение открыло все шкафы; потом 2-ое привидение закрыло те шкафы, номер которых делился на 2; затем 3-третье привидение поменяло позиции (т. е. открыло шкаф, если он был закрыт, и закрыло — если он был открыт) тех шкафов, номер которых делился на 3; следом за ним 4-ое привидение поменяло позиции тех шкафов, номер которых делился на 4 и т. д. Как только 12345678910-ое привидение поменяло позицию 12345678910-го шкафа — пропел петух и все привидения срочно убрались восвояси. Не скажете ли вы, сколько осталось открытых шкафов после посещения привидений?

Задачу решили: 19
всего попыток: 81
Задача опубликована: 16.09.11 08:00
Прислал: volinad img
Источник: задачи 595, 603 и 606
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

В оранжерее на космической станции в виде прямоугольника 713×137 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Трижды хлопала дверь, и всякий раз каждая из 713×137 бабочек перелетала по диагонали на соседний цветок. После каждого хлопка на некоторых цветах оказывалось по несколько бабочек, а на некоторых — ни одной, и при этом каждая бабочка, в очередной раз перелетая, не возвращалась на свой прежний цветок. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки после трёх хлопков.

Задачу решили: 123
всего попыток: 164
Задача опубликована: 15.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Утроенная сумма двух положительных чисел не больше их произведения. Найдите наименьшее значение суммы этих чисел.

Задачу решили: 58
всего попыток: 501
Задача опубликована: 28.10.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Внутри выпуклого четырёхугольника с периметром 60 отмечена точка. Найдите наибольшее целое значение суммы четырёх расстояний от неё до вершин четырёхугольника.

Задачу решили: 99
всего попыток: 154
Задача опубликована: 23.11.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Имеется 4023 последовательных натуральных числа. Известно, что сумма квадратов первых 2012 чисел равна сумме квадратов последних 2011 чисел. Найдите первое число.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.