Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
220
всего попыток:
486
Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)
Задачу решили:
242
всего попыток:
672
Найти остаток от деления на 7 числа
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Задачу решили:
239
всего попыток:
492
Гусеница сидит в углу закрытой коробки 27×41×51 см. В самом дальнем от неё углу коробки есть маленькое отверстие, через которое она хочет выбраться на свободу. Какое наименьшее число сантиметров ей придётся для этого преодолеть?
Задачу решили:
149
всего попыток:
200
Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.) Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)
Задачу решили:
163
всего попыток:
214
Среди участников шахматного турнира юношей было в 7 раз больше, чем девушек, и они вместе набрали в 3 раза больше очков, чем все девушки. Сколько девушек участвовали в турнире? (Турнир проводился по круговой системе: каждый играл с каждым по две партии — одну белыми, а другую чёрными; за выигрыш партии участник получал одно очко, за ничью — 1/2 очка, за проигрыш — 0.)
Задачу решили:
198
всего попыток:
360
На какое максимальное число частей могут делить пространство сфера и поверхность куба?
Задачу решили:
134
всего попыток:
351
Бильярд имеет форму прямоугольного треугольника, один из углов которого равен 30°. Из этого угла в середину противоположной стороны выпущен шар, который при ударах о стенки бильярда отскакивает от них по закону: угол падения равен углу отражения. Сколько раз шар ударится о стенки прежде, чем попадёт в лузу, находящуюся в вершине угла 60°?
Задачу решили:
228
всего попыток:
410
Найдите трёхзначное число, имеющее наибольшее число различных делителей.
Задачу решили:
244
всего попыток:
281
Найти все трёхзначные числа, равные сумме факториалов своих цифр (k! — читается "k факториал" — это произведение всех натуральных чисел от 1 до k). В ответе укажите сумму всех найденных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|