Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
144
Найти максимальное натуральное N такое, что N! можно представить в виде суммы более чем 9-ти последовательных натуральных чисел не более, чем 666-ю способами.
Задачу решили:
25
всего попыток:
291
Есть отрезок длины 100. Петя выбирает натуральное число n. Вася и Петя по очереди (первым делает ход Вася) выбирают любой из имеющихся отрезков и делят его на два отрезка произвольной длины. После своего n-го хода Петя из полученных отрезков пробует составить выпуклый многоугольник максимальной целочисленной площади. При каком минимальном n Пете удастся это сделать независимо от игры Васи.
Задачу решили:
22
всего попыток:
155
У Санта-Клауса, как и обычно это бывает перед Новым Годом есть 8 различных подарков и несколько одинаковых мешков красного цвета (сам он синий). В каждом мешке лежит ровно два предмета(два мешка, два подарка или мешок и подарок). В частности, тот единственный мешок, который Санта-Клаус держит на плече, тоже содержит два предмета. Сколько существует способов разложить подарки по мешкам?
Задачу решили:
52
всего попыток:
85
Найти периметр треугольника наибольшей площади со сторонами a, b, c такими, что 0 < a <= 3,5 <= b <= 5,5 <= c <= 7,5 Результат округлить до двух знаков после запятой.
Задачу решили:
26
всего попыток:
66
В окружность Q целочисленного радиуса вписан четырехугольник ABCD, длины всех сторон которого - попарно различные целые числа. Более того, целочислены и длины диагоналей AC и BD. Пусть E - точка пересечения касательной к окружности Q, проведенной через точку C, с продолжением стороны AD. Угол AEC равен углу ACD, и ABCD - четырехугольник минимальной площади, удовлетворяющий всем этим условиям. Найти произведение площадей треугольников DAB и DCB.
Задачу решили:
49
всего попыток:
61
Все 80 натуральных делителей натурального числа n расположили в порядке возрастания. Оказалось, что делители с первого по четвертый образуют геометрическую прогрессию, делители с четвертого по седьмой - арифметическую прогрессию, а восьмой делитель меньше 200. Найти n.
Задачу решили:
33
всего попыток:
47
В обществе из 15 членов каждое непустое подмножество считается комиссией. В каждой комиссии нужно выбрать председателя, соблюдая правило: если комиссия C является объединением нескольких меньших комиссий, то председателем C должен быть один из председателей этих меньших комиссий. Cколькими способами можно выбрать председателей?
Задачу решили:
81
всего попыток:
94
Натуральное число n возвели в некоторую натуральную степень, после чего у результата стерли последние две цифры и снова получили число n. Найдите максимально возможное значение числа n.
Задачу решили:
51
всего попыток:
65
Найдите все даты 2006 года, для которых выражение (деньмесяц – год) делится нацело на наибольшую возможную степень двойки. В качестве ответа введите значение даты в формате ДДММ.
Задачу решили:
46
всего попыток:
60
Круг разбили ста хордами так, что никакие три хорды не пересекаются в одной точке, при этом при этом всего было сто точек пересечений хорд. На какое наибольшее число областей разобьется круг?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|