Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
319
всего попыток:
728
На 50 деревянных правильных пятиугольников, прибитых к полу, натягивается резиновое кольцо, которое принимает форму некоторого многоугольника. Каково минимальное число его вершин?
(Условие задачи изменено, поскольку прежняя формулировка вызывала много вопросов. )
Задачу решили:
132
всего попыток:
602
Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?
Задачу решили:
220
всего попыток:
486
Какое наибольшее число фотографов могут одновременно сфотографировать друг друга, используя широкоугольные объективы, позволящие делать кадры углового размера 173°? (Фотографы — это различные точки плоскости.)
Задачу решили:
157
всего попыток:
570
Сколько клеток составляет площадь выпуклого 16-угольника минимального периметра, вершины которого находятся в узлах клетчатой бумаги?
Задачу решили:
149
всего попыток:
200
Существует теория, что ночная бабочка для навигации использует Луну: она летит по прямой, поддерживая постоянным угол между направлением своего полёта и направлением на Луну. Если же она примет за Луну уличный фонарь или другой близкий к ней источник света, то полетит вокруг него по спирали, приближаясь или удаляясь от него. (Пограничный случай полёта по окружности бывает лишь в теории.) Через сколько секунд ночная бабочка долетит до фонаря, если он находится в 18-ти метрах от неё, летит она со скоростью 1 м/с и поддерживает угол 60° между направлением своего полёта и направлением на фонарь? (Бабочка и фонарь — это точки в пространстве.)
Задачу решили:
134
всего попыток:
351
Бильярд имеет форму прямоугольного треугольника, один из углов которого равен 30°. Из этого угла в середину противоположной стороны выпущен шар, который при ударах о стенки бильярда отскакивает от них по закону: угол падения равен углу отражения. Сколько раз шар ударится о стенки прежде, чем попадёт в лузу, находящуюся в вершине угла 60°?
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
272
всего попыток:
297
В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.
Задачу решили:
129
всего попыток:
277
Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?
Задачу решили:
94
всего попыток:
199
Через одну и ту же точку провели 2009 окружностей. На какое наибольшее число частей они могут разбить плоскость?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|