Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
35
всего попыток:
79
В треугольнике ABC
Через середину M стороны AC провели прямую l перпендикулярно прямой BC. Прямая l пересекает окружность с центром в точке A и проходящую через точку M в точке . Рассмотрим окружность, проходящую через точки B и M, центр O которой лежит с точкой A по разные стороны от прямой BC и находится на расстоянии 3 от BC. Обозначим пересечение этой окружности с прямой l за Q. Найдите площадь треугольника OPM, если PQ = 30.
Задачу решили:
26
всего попыток:
91
Описанная окружность треугольника касается окружности в точке . Пусть прямая пересекает окружность в точке ; прямая пересекает окружность в точке , лежащей с точкой по разные стороны от прямой , и точке . Касательная к окружности в точке пересекает отрезок в точке , прямая пересекает окружность в точке . Найдите величину (в градусах) , если , , .
Задачу решили:
25
всего попыток:
54
Поверхность трехмерного тела задана уравнением: Найдите натуральные значения параметров a и b, при которых численное значение объёма тела в четыре раза больше численного значения площади его поверхности. В качестве ответа введите значение произведения ab.
Задачу решили:
21
всего попыток:
25
В треугольнике ABC соотношения длин сторон: Пусть m - окружность, описанная около треугольника ABC, её длина равна 1440. n - окружность, вписанная в треугольнике ABC. Определим множество W всех таких точек M на окружности m, которые обладают следующим свойством: Очевидно, точки A, B и С принадлежат множеству W. Известно, что множество W можно разбивать на взаимно непересекающиеся сплошные дуги на окружности m. Чему равна их суммарная длина?
Задачу решили:
29
всего попыток:
43
В прямоугольном треугольнике ABC, с гипотенузой |BC|=a и длиной высоты из вершины A равной a/5. Гипотенуза разделена на 9 равных отрезков. Найдите тангенс угла под которым виден отрезок, содержащий середину гипотенузы.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|