Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
69
всего попыток:
82
Найти минимум функции f(x)=x3(x3+1)(x3+2)(x3+3).
Задачу решили:
28
всего попыток:
51
Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.
Задачу решили:
30
всего попыток:
55
Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?
Задачу решили:
27
всего попыток:
45
Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задачу решили:
44
всего попыток:
66
Найдите остаток от деления многочлена (15x996 + 2x335 – 11x3 + 125x + 646) на многочлен (– 2x2 – 2). В ответе укажите сумму коэффициентов остатка.
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
20
всего попыток:
27
В тетраэдре ABCD: |AB|=a, |CD|=b, расстояние между прямыми AB и CD равно d, величина угла между этими прямыми равна a. Тетраэдр разделен на две части плоскостью P, параллельной противвоположным ребрам AB и CD. Вычислите отношение объёмов обеих частей (меньшего к большему), если известно, что отношение расстояния от AB до P к расстоянию от CD до P равно 3.
Задачу решили:
29
всего попыток:
40
Решите уравнение x2 + y2 = (x + 1)3 в целых числах.
Задачу решили:
29
всего попыток:
82
Какое .максимальное число шаров радиуса 1/2 можно вложить в прямоугольный параллелепипед размером 10×10×1.
Задачу решили:
4
всего попыток:
5
На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку: На том же рисунке также изображён квадрат размером 8x8, в котором данное полиомино помещается целиком. В этом примере полиомино занимает на листе тетрадки 9 строк и 9 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами -3/5 и 5/3. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата. Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами: Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим: В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|