Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
209
всего попыток:
540
Сколько различных решений имеет уравнение log1/16x=(1/16)x?
Задачу решили:
33
всего попыток:
430
Припишем каждой букве русского языка свой номер: А–1, Б–2, ..., Я–33 (включаем все: Ё, Й, Ъ, и т.д.). Попытаемся разместить на плоскости несчётное множество букв А, несчётное множество букв Б, и так до буквы Я. Одинаковые буквы могут быть разного размера, но не могут иметь общих точек. Укажите сумму номеров букв, для которых это можно сделать.
Задачу решили:
66
всего попыток:
72
Можно ли представить произвольное натуральное число в виде выражения, содержащего лишь три двойки и произвольные математические знаки? Т.е. допускается сколько угодно складывать, вычитать, менять знак, умножать, делить, возводить в степень, извлекать корни, логарифмировать, вычислять синусы и арксинусы, косинусы и арккосинусы, тангенсы и арктангенсы, но все числа в выражении должны быть записаны в десятичной записи с помощью лишь трёх двоек.
Задачу решили:
48
всего попыток:
70
Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)
Задачу решили:
125
всего попыток:
355
Решите неравенство . В ответе укажите число его целых решений.
Задачу решили:
112
всего попыток:
150
Найдите остаток от деления числа (2010!)2011 на 2011 (n! означает произведение всех натуральных чисел от 1 до n).
Задачу решили:
86
всего попыток:
151
Многочлен степени 2010 имеет 2010 действительных различных корней. Найдите наименьшее число его ненулевых коэффициентов.
Задачу решили:
60
всего попыток:
120
Числа s, t, u, v удовлетворяют условию: . Найти .
Задачу решили:
32
всего попыток:
185
Определим две последовательности многочленов: S0(x)=C0(x)=1, C1(x)=x, Sn+1(x)=Cn+1(x)+xSn(x), Cn+2(x)=xCn+1(x)+x2Sn(x)−Sn(x). Сколько различных действительных корней имеет многочлен C2011(x) в интервале (−1/2, 1/2)?
(Задача изменена, следуя zmerch(у)!)
Задачу решили:
76
всего попыток:
277
Найдите остаток от деления многочлена x57+5x56-13x31-7x30-x2+2x-3 на 7x2+7. В ответе укажите значение многочлена при x=1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|