Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
43
всего попыток:
55
В четырёх прямоугольниках с соотношением сторон (отношение длины к ширине) 3, 5, 7 и 8 соответственно, проведены диагонали. Найти сумму всех четырёх острых углов пересечения диагоналей в этих прямоугольниках в градусах.
Задачу решили:
24
всего попыток:
27
На каждой стороне 10-угольника (не обязательно выпуклого) как на диаметре построили окружность. Может ли оказаться, что все эти окружности имеют общую точку, не совпадающую ни с одной вершиной 10-угольника?
Задачу решили:
55
всего попыток:
60
Найти минимальный радиус круга, в котором можно поместить без наложений 7 кругов радиуса 1?
Задачу решили:
51
всего попыток:
131
Найти диаметр полуокружности:
Задачу решили:
68
всего попыток:
85
В шестиугольнике все внутренние углы равны, известны длины некоторых сторон (они указаны на рисунке). Найти длину стсроны, отмеченную знаком вопроса.
Задачу решили:
53
всего попыток:
54
К стороне AB квадрата ABCD прилегает прямоугольный треугольник ABM так, что AB является гипотенузой. Расстояние от точки M до центра квадрата O (точка пересечения диагоналей квадрата) равно 10 см. Найти площадь четырехугольника AOBM.
Задачу решили:
29
всего попыток:
70
К стороне АВ квадрата АВСD примыкает прямоугольный треугольник АВМ (АВ-гипотенуза, М расположена внутри квадрата). Расстояние МО=10 см (О является точкой пересечения диагоналей квадрата). Найти площадь четырехугольника АОМВ, определив минимальный целочисленный размер стороны квадрата в см для данного условия. Ответ округлить до целого.
Задачу решили:
71
всего попыток:
88
Найдите площадь желтого прямоугольника.
Задачу решили:
33
всего попыток:
43
Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Причем, центры окружности и клетки не обязательно совпадают. Пусть L1 – сумма длин участков этой окружности, проходящих по белым клеткам, а L – длина всей окружности. Определите точную верхнюю границу отношения L1/ L.
Задачу решили:
22
всего попыток:
43
В правильном десятиугольнике ABCD...J со стороной 4000 точка К является пересечением диагоналей АD и BG. Стороны, содержащие вершину А, продлеваются двумя лучами - за вершины В и J. Пусть m и M обозначают нижнюю и верхнюю грани расстояний от вершины А до прямых, проходящих через точку К и не проходящих через вершину А, и пересекающих оба луча. Найдите целую часть m·M.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|