Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
129
всего попыток:
185
Найдите сумму тангенсов всех углов треугольника при условии, что все три тангенса — целые числа.
Задачу решили:
123
всего попыток:
168
Вычислите x2/(y+z)+y2/(x+z)+z2/(x+y), если x/(y+z)+y/(x+z)+z/(x+y)=1.
Задачу решили:
48
всего попыток:
70
Найдите два таких иррациональных числа a и b, что число ab является рациональным. (Числа надо указать конкретно; требуется также доказать их иррациональность, но обязательно оставаясь в рамках школьной программы — пользоваться сложными теоремами теории чисел, подобными седьмой проблеме Гильберта или трансцендентности e, нельзя!)
Задачу решили:
137
всего попыток:
191
Представить сумму 1/(22−1)+1/(42−1)+1/(62−1)+1/(82−1)+...+1/(20102−1) в виде несократимой дроби. В ответе указать сумму числителя и знаменателя.
Задачу решили:
51
всего попыток:
72
Можно ли квадрат разрезать на 20 одинаковых прямоугольных треугольников, один катет каждого из которых в два раза длиннее другого?
Задачу решили:
109
всего попыток:
280
На плоскости отмечена 21 точка так, как показано на рисунке. Какое наименьшее число прямых нужно провести, чтобы разделить все отмеченные точки? (Т.е. для любой пары отмеченных точек должна найтись проведённая прямая, не содержащая ни одну из них и проходящая между ними.)
Задачу решили:
127
всего попыток:
209
В каждой клетке квадрата 4×4, нарисованного на клетчатой бумаге, написано одно целое число. Известно, что для любой клетки квадрата сумма чисел, написанных во всех соседних с нею клетках, равна 1. Найти сумму всех шестнадцати чисел. (Клетки называются соседними, если они имеют общую сторону.)
Задачу решили:
23
всего попыток:
28
В квадрате со стороной 29 см расположена фигура, расстояние между любыми двумя точками которой не равно 1 см. Доказать, что площадь этой фигуры меньше 300 см2. (Можно считать, что граница фигуры состоит из отрезков прямых и дуг окружностей.)
Задачу решили:
56
всего попыток:
263
Периметр выпуклого четырёхугольника равен 2010, длина одной из его диагоналей равна 1000, а длина второй — целому числу m. Найдите наименьшее и наибольшее значения m. В ответе укажите произведение двух найденных чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|