img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 0
+ЗАДАЧА 1437. 5 часов (О. Подлипский)
  
Задачу решили: 36
всего попыток: 42
Задача опубликована: 02.11.16 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

У вас имеется 5 часов со стрелками. Вы можете любые несколько из них перевести вперед. Для каждых часов время, на которое при этом их перевели, назовем временем перевода. Требуется все часы установить так, чтобы они показывали одинаковое время. За какое наименьшее суммарное количество часов перевода это можно гарантированно сделать?

Задачу решили: 53
всего попыток: 75
Задача опубликована: 07.12.16 21:23
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: leonid (Леонид Шляпочник)

Найдите наибольший общий делитель для всех чисел вида p4-1, где p - простое число, большее 5.

+ 1
+ЗАДАЧА 1463. Числа в таблице (И. Богданов, Г. Челноков)
  
Задачу решили: 27
всего попыток: 45
Задача опубликована: 02.01.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100

Таблице из 9 строк и 2016 столбцов заполнена числами от 1 до 2016, каждое — по 9 раз. При этом в любом столбце числа различаются не более, чем на 3. Найдите минимальную возможную сумму чисел в первой строке.

Задачу решили: 15
всего попыток: 17
Задача опубликована: 27.02.17 08:00
Прислал: leonid img
Источник: XLIII Московская областная математическая оли...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется таблица 1000 х 1000, все клетки которой изначально пусты. Два игрока-терминатора соревнуются в следующей игре. За один ход можно записать в любую незанятую клетку таблицы любое натуральное число от 1 до 106, если такого числа еще нет в таблице. Игроки записывают числа, пока не заполнят всю таблицу. Пусть А количество строк, в каждой из которых сумма чисел делится нацело на 106, а В – количество столбцов, в каждом из которых сумма чисел делится нацело на 106. Первый игрок выигрывает, если А > В, иначе выигрывает второй игрок. Кто из игроков сможет выиграть независимо от игры соперника? (Укажите номер победителя: 1 или 2.)

Задачу решили: 28
всего попыток: 94
Задача опубликована: 06.03.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

По кругу написаны 29 ненулевых цифр. Из каждой пары соседних цифр составили двузначное число (при обходе по часовой стрелке первая цифра - число десятков, вторая - число единиц). При этом произведение получившихся 29 чисел является полным квадратом натурального числа. Найти минимальную сумму всех цифр. 

Задачу решили: 36
всего попыток: 40
Задача опубликована: 28.04.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: georgp

Натуральные числа k, m, n больше 1 и взаимно просты, при этом kmn=10(k+m+n). Найти минимальное значение km+mn+nk.

Задачу решили: 41
всего попыток: 75
Задача опубликована: 10.07.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18.

Найти X+Y.

Задачу решили: 44
всего попыток: 146
Задача опубликована: 11.08.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найти количество натуральных решений уравнения x2+10!=y2.

Задачу решили: 39
всего попыток: 76
Задача опубликована: 16.10.17 08:00
Прислал: leonid img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Найдите положительный остаток при делении 666666777777 на 1464851.

Задачу решили: 76
всего попыток: 117
Задача опубликована: 27.10.17 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 1-5 img
баллы: 100
Лучшее решение: georgp

В игре У2В3 за каждый ход можно либо умножить число на 2, либо вычесть 3. За какое минимальное число ходов можно из 11 получить 25.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.