Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
68
всего попыток:
85
В шестиугольнике все внутренние углы равны, известны длины некоторых сторон (они указаны на рисунке). Найти длину стсроны, отмеченную знаком вопроса.
Задачу решили:
53
всего попыток:
54
К стороне AB квадрата ABCD прилегает прямоугольный треугольник ABM так, что AB является гипотенузой. Расстояние от точки M до центра квадрата O (точка пересечения диагоналей квадрата) равно 10 см. Найти площадь четырехугольника AOBM.
Задачу решили:
29
всего попыток:
70
К стороне АВ квадрата АВСD примыкает прямоугольный треугольник АВМ (АВ-гипотенуза, М расположена внутри квадрата). Расстояние МО=10 см (О является точкой пересечения диагоналей квадрата). Найти площадь четырехугольника АОМВ, определив минимальный целочисленный размер стороны квадрата в см для данного условия. Ответ округлить до целого.
Задачу решили:
71
всего попыток:
88
Найдите площадь желтого прямоугольника.
Задачу решили:
33
всего попыток:
43
Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Причем, центры окружности и клетки не обязательно совпадают. Пусть L1 – сумма длин участков этой окружности, проходящих по белым клеткам, а L – длина всей окружности. Определите точную верхнюю границу отношения L1/ L.
Задачу решили:
26
всего попыток:
38
Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.
Задачу решили:
22
всего попыток:
43
В правильном десятиугольнике ABCD...J со стороной 4000 точка К является пересечением диагоналей АD и BG. Стороны, содержащие вершину А, продлеваются двумя лучами - за вершины В и J. Пусть m и M обозначают нижнюю и верхнюю грани расстояний от вершины А до прямых, проходящих через точку К и не проходящих через вершину А, и пересекающих оба луча. Найдите целую часть m·M.
Задачу решили:
42
всего попыток:
58
В треугольнике через точку, являющуюся центром тяжести проведена прямая линия, которая делит его на две части. Найти минимальное отношение площадей полученных частей.
Задачу решили:
67
всего попыток:
72
В прямоугольный треугольник ABC вписана полуокружность так, что касается гипотенузы BC. Известно, что |AB| = 12, |CD| = 1. Найти радиус окружности.
Задачу решили:
46
всего попыток:
52
Определите площадь прямоугольника с учетом известных площадей частей.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|