Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
115
всего попыток:
210
Вася записал в тетрадке числа 1, 2, 3, ..., 11. Вася и Петя по очереди (начинает Вася) стирают по три любых числа до тех пор, пока не останется два числа. Вася выигрывает у Пети количество монеток, равное разности этих двух чисел. Какой максимальный выигрыш может обеспечить себе Вася при правильной стратегии обоих игроков?
Задачу решили:
175
всего попыток:
314
Есть весы, показывающие точный вес, и 6 одинаковых на вид монет, одна из которых фальшивая: её вес отличается от веса настоящей монеты (веса настоящих монет одинаковы). За какое наименьшее число взвешиваний можно наверняка определить вес настоящей монеты и вес фальшивой?
Задачу решили:
124
всего попыток:
259
Три миссионера и три аборигена хотят переправиться через реку на лодке, которая вмещает только двоих. Если миссионеры окажутся в меньшинстве на берегу или рядом с берегом, то аборигены их сразу съедят. За какое наименьшее число рейсов все они смогут безопасно переправиться на другой берег? (Рейсы нужно считать все: туда и обратно — это два рейса.)
Задачу решили:
60
всего попыток:
97
Конь может сделать N ходов (N≥2) и вернуться в исходную клетку, побывав при этом на всех горизонталях и вертикалях шахматной доски N×N. Найдите сумму всех возможных значений N.
Задачу решили:
122
всего попыток:
257
В ряду 10 монет. Сначала подряд лежат несколько (от 1 до 9) настоящих, которые весят по 10 граммов, а все следующие за ними — фальшивые, весящие по 9 граммов. За какое минимальное число взвешиваний на чашечных весах без гирь можно определить, какие монеты — настоящие, а какие — фальшивые?
Задачу решили:
63
всего попыток:
143
Два игрока записывают 2n-значное натуральное число, используя лишь цифры 1, 2, 3, 4, 5. Первую цифру пишет первый игрок, вторую — второй, третью — опять первый, и так далее. Задача второго игрока добиться, чтобы число, полученное по окончании игры, делилось на 9. Задача первого — помешать второму. При каких n выигрывает первый, а при каких — второй? В ответе укажите количество значений n от 1 до 10 (включительно), при которых выигрывает первый.
Задачу решили:
62
всего попыток:
251
Имеется предмет, о котором известно, что его вес составляет целое число кг от 1 до 27. Также есть чашечные весы, на обе чашки которых можно класть гири. Определите наименьшее количество гирь, с помощью которых можно определить вес предмета.
Задачу решили:
64
всего попыток:
156
Перед двумя игроками кучка из 1000 спичек. В начале игры первый игрок берёт из неё любое количество спичек от 1 до 999, а затем каждый из игроков по очереди берёт любое число оставшихся спичек, но не больше, чем перед этим взял другой игрок. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Какое наименьшее количество спичек должен взять в начале игры первый игрок, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
41
всего попыток:
116
Матрицу 10x10 заполнили целыми числами от 1 до 100 так, что сумма любых двух чисел на соседних клетках не превосходит некоторого целого числа M. Найдите минимально возможное M.
Задачу решили:
37
всего попыток:
89
Числа от 1 до 20 расположены по кругу так, что минимальная разница между любыми двумя соседними числами максимальна. Найдите эту разницу.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|