Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
65
Любое простое число вида p=4k+1 можно единственным способом представить в виде: p = a² + b², где a<b - целые положительные числа. Например: 165100009 = 5520² + 11603². Квадраты таких простых чисел также можно представить единственным способом в виде: p² = x² + y², где x<y - целые положительные числа. Найдите два целых положительных числа x<y, для которых выполняется: 165100009² = x² + y². В качестве ответа введите оба числа подряд без пробелов: x (меньший), и сразу за ним y (больший).
Задачу решили:
59
всего попыток:
311
Сколько существует пар положительных целых чисел, удовлетворяющих уравнению x2+10!=y2?
Задачу решили:
69
всего попыток:
94
Все члены конечной последовательности являются натуральными числами. Известно, что каждый член этой последовательности, начиная со второго, либо в 6 раз больше, либо в 6 раз меньше предыдущего, а сумма всех членов последовательности равна 2024. Какое наибольшее количество членов может быть в такой последовательности?
Задачу решили:
62
всего попыток:
77
Натуральное число 55n3 имеет 55 делителей, включая 1 и само число. Сколько делителей имеет натуральное число вида 7n7?
Задачу решили:
60
всего попыток:
122
Найти максимальное натуральное число n такое, что n7+1 делится на n+7.
Задачу решили:
45
всего попыток:
58
Найти количесто пар натуральных чисел таких n и m (n>=m), что nm=n+m+НОД(n,m), где НОД(n,m) - наибольший общий делитель чисел n и m.
Задачу решили:
60
всего попыток:
65
Найти сумму всех натуральных чисел n таких, что произведение его цифр равно n2-10n-22.
Задачу решили:
21
всего попыток:
32
Пусть a и b - натуральные числа, рассмотрим все 6 возможных попарных произведений чисел a, b, a+2 и b+2. Какое максимальное количество из этих произведений могут быть полными квадратами.
Задачу решили:
27
всего попыток:
54
Пусть функция f(x) определена на множестве рациональных чисел и f(m/n)=1/n для взаимно-простых m и n. Найти произведение всех x таких, что f((x-f(x))/(1-f(x)))=f(x)+9/52.
Задачу решили:
30
всего попыток:
39
Найдите наибольшее натуральное число n<100 не представимое в виде a*b+b*c+c*a , где a, b, c - натуральные числа
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|