img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 61
всего попыток: 204
Задача опубликована: 06.07.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

В оранжерее на космической станции в виде прямоугольника 20×30 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 600 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 174
всего попыток: 252
Задача опубликована: 08.07.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Шла торговка на рынок продавать пирожки. По дороге она проголодалась и съела сначала пирожок и половину остатка, затем ещё пирожок и пол-остатка, затем ещё пирожок и пол-остатка. А затем по дороге воры украли 7 пирожков и пол-остатка. На рынок торговка принесла 1 пирожок. Сколько пирожков было?

Задачу решили: 44
всего попыток: 249
Задача опубликована: 13.07.11 08:00
Прислал: Vkorsukov img
Источник: На основе задач 595 и 603; совместно с volina...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ROMARINA (Lyubov Dudina)

В оранжерее на космической станции в виде прямоугольника 23×31 расставлены горшки с цветами. На каждом цветке сидит по одной бабочке. Хлопнула дверь, и каждая из 713 бабочек перелетела по диагонали через один цветок. После этого на некоторых цветах оказалось по несколько бабочек, а на некоторых — ни одной. Найдите наименьшее возможное число цветов, на которых не сидит ни одной бабочки.

Задачу решили: 82
всего попыток: 206
Задача опубликована: 22.07.11 08:00
Прислал: demiurgos img
Источник: по мотивам задачи, присланной Ulkas
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Сколько понадобится четвёрок, чтобы записать в десятичной системе счисления все натуральные числа от 1 до 1111111111? (Последнее число состоит из 10 единиц.)

Задачу решили: 101
всего попыток: 137
Задача опубликована: 01.08.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Саша бросил монету 21 раз, а Володя — только 20. Найдите вероятность того, что у Саши выпало больше орлов, чем у Володи.

Задачу решили: 88
всего попыток: 111
Задача опубликована: 05.08.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: nellyk

Пусть — многочлен от переменной с чётными целыми коэффициентами, и   — такие целые числа, что . Найдите наибольшее возможное значение разности .

Задачу решили: 37
всего попыток: 310
Задача опубликована: 10.08.11 08:00
Прислал: Vkorsukov img
Источник: Задача 607
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: volinad (Владимир Алексеевич Данилов)

В шахматной композиции (задачах) есть раздел  сказочных шахмат. В этих задачах изменены или дополнены некоторые шахматные правила (фигуры, форма шахматной доски и т.п.). Рассмотрим сказочные шахматы, в которых короли могут находиться под боем (шахом), а значит возможно и взятие королей. Остальные шахматные правила оставляем в силе. Целью такой игры может быть, например, взятие всех неприятельских фигур (как в шашках). Среди всех возможных позиций,  полученных из начальной шахматной позиции играя по этим правилам, присутствуют и позиции только с двумя фигурами — белым королём и чёрным слоном, в которых белые начинают и выигрывают в один ход. Вычислите вероятность возникновения такой позиции при случайной расстановке белого короля и чёрного слона на пустую шахматную доску.

Задачу решили: 95
всего попыток: 117
Задача опубликована: 12.08.11 08:00
Прислала: Nana img
Источник: Новосибирская областная олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Хорда удалена от центра окружности на расстояние 60. В каждый из двух полученных сегментов вписан квадрат так, что пара его соседних вершин лежит на хорде, а другая пара вершин — на соответствующей дуге окружности. Найдите разность длин сторон квадратов.

Задачу решили: 87
всего попыток: 123
Задача опубликована: 22.08.11 08:00
Прислал: Timur img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Десятизначное число составлено следующим образом: первая цифра равна количеству единиц в этом числе, вторая цифра — количеству двоек и т.д., десятая цифра — количеству нулей. Найдите сумму всех таких чисел.

Задачу решили: 32
всего попыток: 185
Задача опубликована: 24.08.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Timur

Определим две последовательности многочленов: S0(x)=C0(x)=1, C1(x)=x, Sn+1(x)=Cn+1(x)+xSn(x), Cn+2(x)=xCn+1(x)+x2Sn(x)−Sn(x). Сколько различных действительных корней имеет многочлен C2011(x) в интервале (−1/2, 1/2)?

(Задача изменена, следуя zmerch(у)!)
 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.