img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 299
всего попыток: 397
Задача опубликована: 22.04.09 20:25
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

Про индийского математика-самородка С.А.Рамануджана говорили, что каждое натуральное число было его близким другом. Однажды английский математик Г.Г.Харди сказал ему: "Сегодня я ехал на такси с совершенно неинтересным номером ..." — после чего назвал некое четырёхзначное число. "Почему же неинтересным?" — сразу ответил Рамануджан: "Ведь это наименьшее число, которое может быть представлено в виде суммы двух кубов натуральных чисел двумя различными способами!" Какой был номер такси?

+ 37
+ЗАДАЧА 66. Хитрая улитка II (Н.Н.Константинов)
  
Задачу решили: 164
всего попыток: 717
Задача опубликована: 23.04.09 09:56
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Crazy_666

Улитка ползёт вперед по прямой с непостоянной скоростью. Назад она не поворачивает, но может останавливаться. Несколько человек наблюдают за ней по очереди: каждый из них (кроме первого) начинает наблюдение позже, чем начинает предыдущий, но раньше, чем он заканчивает. Каждый из наблюдателей следит за улиткой ровно 10 минут и замечает, что за это время она проползла ровно 10 см. Количество наблюдателей неизвестно, но общее время их наблюдения составляет 1 час: последний заканчивает наблюдать ровно через час после того, как начинает первый.

Какое минимальное расстояние может проползти улитка за 1 час наблюдений при этих условиях? (Ответ дать в сантиметрах.)

Задачу решили: 177
всего попыток: 627
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: vitmark (Vitaly Markasyan)

Есть картонный невыпуклый стоугольник. Если разрезать его один раз по прямой линии, то он распадётся на несколько новых многоугольников. Какое максимальное число треугольников может среди них получиться?

(Предлагалась на "Первом математическом")
Задачу решили: 227
всего попыток: 552
Задача опубликована: 24.04.09 18:54
Прислал: demiurgos img
Источник: Всероссийская математическая олимпиада школьн...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Hasmik33

Каждое из 2009 чисел равно 1, 0 или -1. Какое наименьшее значение может принимать сумма произведений всех пар, составленных из этих чисел?

(Предлагалась на "Первом математическом")
Задачу решили: 171
всего попыток: 639
Задача опубликована: 26.04.09 15:18
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгоритмыimg

Саша выставляет на пустую шахматную доску ладьи: первую — куда захочет, а каждую следующую ставит так, чтобы она побила нечетное число ранее выставленных ладей. Какое наибольшее число ладей он сможет так выставить? (Как обычно, ладьи бьют друг друга и по вертикали, и по горизонтали, но только если между ними нет других ладей.)

Задачу решили: 198
всего попыток: 439
Задача опубликована: 27.04.09 21:20
Прислал: dasaneleq img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

В футбольном турнире каждая команда сыграла с каждой по одному разу. Ровно треть команд хотя бы раз сыграли вничью, а ровно 75% остальных команд не обошлись без поражений. При этом только одна команда не проиграла ни одного матча. Сколько матчей турнира окончились победой одной из команд?

Задачу решили: 255
всего попыток: 569
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Всесоюзная математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: ODG (Игорь Логвинов)

В романе 50 глав: 25 с нечётным количеством страниц и 25 — с чётным. Первая глава начинается с нечётной страницы, а каждая из остальных — с новой страницы, сразу следующей за предыдущей главой. Какое максимальное число глав может начинаться с чётной страницы?

Задачу решили: 132
всего попыток: 602
Задача опубликована: 29.04.09 11:14
Прислал: demiurgos img
Источник: Московская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: gpariska (Галина Парижская)

Даны 4 точки на плоскости, не лежащие на одной окружности. Каково максимально возможное число окружностей, равноудалённых от всех точек?

Задачу решили: 231
всего попыток: 718
Задача опубликована: 06.05.09 15:33
Прислал: demiurgos img
Источник: Московская математическая олимпиада школьнико...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sertyh (Николай Мельниченко)

На какое минимальное число тетраэдров можно разрезать куб? (Тетраэдр — это треугольная пирамида.)

Задачу решили: 107
всего попыток: 499
Задача опубликована: 08.05.09 23:16
Прислал: demiurgos img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: crazor (Дмитрий Мисерев)

Сколькими разными способами можно раскрасить рёбра куба тремя цветами так, чтобы в каждой вершине сходились рёбра трёх разных цветов? (Две раскраски считаются разными, если они не переходят друг в друга при любом вращении куба.)

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.