Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
42
всего попыток:
47
У многогранника, описанного около сферы, большой гранью будем называть такую, что проекция сферы на плоскость целиком попадает в грань. Какое максимальное число больших гранией может быть у многогранника?
Задачу решили:
36
всего попыток:
56
У выпуклого многогранника 30 граней, и все грани являются треугольниками. Какое наибольшее число вершин, в которых сходится ровно 3 ребра, может быть у такого многогранника?
Задачу решили:
56
всего попыток:
191
На какое наименьшее количество частей надо разрезать арбуз так, чтобы после того, как будет съедена мякоть - останется ровно 7 корок. (Ломать корки в процессе поедания нельзя, только есть мякоть.)
Задачу решили:
13
всего попыток:
52
Ребра правильного тетраэдра поделены на 6 равных частей. Через все точки деления провели все возможные плоскости параллельные граням тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
50
всего попыток:
74
Одна грань прямоугольного параллелепипеда имеет площадь 18, другая - 24. Определить минимум квадрата диагонали.
Задачу решили:
41
всего попыток:
66
Из бумажного круга вырезали круговой сектор и из полученной фигуры склеили боковую поверхность конуса. При каком центральном угле вырезанного сектора, из которого был склеен конус, объем конуса будет максимальным? Ответ в градусах округлите до ближайшего целого числа.
Задачу решили:
25
всего попыток:
54
Поверхность трехмерного тела задана уравнением: Найдите натуральные значения параметров a и b, при которых численное значение объёма тела в четыре раза больше численного значения площади его поверхности. В качестве ответа введите значение произведения ab.
Задачу решили:
15
всего попыток:
28
Внутрь куба со стороной ребра 1 вложен другой куб так, что ровно 6 его вершин лежат на 6 разных гранях исходного куба. Определите минимально возможный размер стороны внутреннего куба.
Задачу решили:
17
всего попыток:
96
Одно из боковых ребер правильной шестиугольной призмы совпадает с диагональю куба, а противоположное ему ребро призмы содержит вершину куба. Найдите объем общей части этих тел, если ребро куба равно 1.
Задачу решили:
28
всего попыток:
47
В прямой круговой конус объема V вписан шар. Около этого шара описан прямой круговой цилиндр, основание которого лежит в плокости основания конуса, а объем его равен U. Найдите минимально возможное k такое, что V=kU.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|