img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 30
всего попыток: 53
Задача опубликована: 08.12.21 08:00
Прислал: solomon img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: makar243 (Сулейман Макаренко)

К оси правильно идущих часов приделали 3-ю стрелку, которая движется равномерно в каждый момент времени делит пополам угол между часовой и минутной стрелками. Сколько оборотов сделает 3-я стрелка за сутки, если в полночь все три стрелки совпадают?

Задачу решили: 30
всего попыток: 45
Задача опубликована: 20.12.21 08:00
Прислал: admin img
Источник: В. И. Арнольд, "Задачи для детей от 5 до 15 л...
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Сколькими способами можно разбить число 64 на 10 натуральных слагаемых, наибольшее из которых равно 12. (Разбиения, отличающиеся только порядком слагаемых, не считаются различными.)

Задачу решили: 19
всего попыток: 37
Задача опубликована: 11.04.22 08:00
Прислал: admin img
Источник: Задачи и головоломки на FB
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

У Кости есть игрушечная железная дорога в виде кольца, состоящая из n=13 равных дуг.

Железная дорога

Костя решил докупить ещё несколько таких же дуг, чтобы удлинить путь (при этом он уже не будет круговым, но должен остаться замкнутым и без самопересечений). Какое минимальное количество дуг ему хватит, чтобы осуществить задуманное?

Задачу решили: 26
всего попыток: 35
Задача опубликована: 13.06.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Vkorsukov

Найти наименьшее натуральное число, сумма собственных делителей которого равна 106.

Собственным делителем считается делитель числа, меньший самого числа.

Задачу решили: 37
всего попыток: 53
Задача опубликована: 12.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти две последние цифры значения выражения 1100+2100+3100+...+100100.

Задачу решили: 28
всего попыток: 29
Задача опубликована: 22.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть p - простое число, а n - целое положительное число и
(p−4)(p+1)(p+3)=(n−4)(n+4). Найдите сумму всех p.

Задачу решили: 21
всего попыток: 79
Задача опубликована: 01.09.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: логикаimg
Лучшее решение: TALMON (Тальмон Сильвер)

Имеется двое песочных часов: одни отмеряют 9 минут, вторые - 22 минуты. Какое миинимальное количество раз их нужно перевернуть, чтобы отмерить 33 минуты?

Задачу решили: 4
всего попыток: 47
Задача опубликована: 12.09.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Полиомино в квадрате 9x9

На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:

  1. Для полиомино существует квадрат 9x9, в котором оно помещается целиком.
  2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 9x9, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n2 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 10 строк и 10 столбцов;
n4 – Количество полиомино, занимающих 10 строк и 11 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 11 строк и 11 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 22
всего попыток: 80
Задача опубликована: 23.11.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Есть 4 конечных множества размера 20 каждый. Максимальный размер пересечения каких-либо двух из них равен 10. Какой минимальный размер объединения всех четырёх?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.