img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: avilow предложил задачу "Ломаные маршруты - 2" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 43
всего попыток: 112
Задача опубликована: 21.09.12 08:00
Прислал: bbny img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Подмножество S действительных чисел строится следующим образом:

1. Число 1 принадлежит S

2. Для любой пары чисел a и b из S числа a+b, a-b, a*b, a/b (b ≠ 0), sqrt(a) (a >= 0) принадлежат S

Теперь для каждого числа из S определим ранг (целое неотрицательное число):

Будем говорить, что числа -1, 0 и 1 имеют ранг 0 в S, числа ранга k и ниже образуют подмножество Sk множества S, а числа, получаемые из пар чисел Sk пятью вышеуказанными бинарными и унарными операциями и не принадлежащие Sk, имеют ранг k+1.

Т.е. ранг - это минимальный номер шага, на котором мы можем получить число из исходного множества S0 = {-1,0,1}

Найдите ранг числа


number.gif

Задачу решили: 26
всего попыток: 91
Задача опубликована: 24.09.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Vkorsukov

Описанная окружность O треугольника ABC касается окружности O' в точке A. Пусть прямая AB пересекает окружность O' в точке D(\ne A); прямая BC пересекает окружность O' в точке E, лежащей с точкой C по разные стороны от прямой AD, и точке F. Касательная к окружности O в точке B пересекает отрезок DF в точке K, прямая CD пересекает окружность O' в точке L(\ne D). Найдите величину (в градусах) \angle CAB, если \angle CFA = 38^\circ, \angle DKB = 47^\circ, \angle CLA = 60^\circ.

Задачу решили: 27
всего попыток: 100
Задача опубликована: 10.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите количество инъективных функций f \colon \{1,2,\ldots, 7\} \to \{1,2,\ldots,9\}, обладающих следующим свойством:

f(i) \ne f(j) + 1 для всех 1 \le i < j \le 7.

+ 10
+ЗАДАЧА 803. Числа (Ростовский Д.)
  
Задачу решили: 117
всего попыток: 132
Задача опубликована: 15.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления  х-у на 23

Задачу решили: 51
всего попыток: 123
Задача опубликована: 22.10.12 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: pvpsaba (Saba Dzmanashvili)

Найдите наименьшее натуральное m, для которого следующее выражение является целым числом:

180! \left( \cfrac{1}{181} + \cfrac{(-1)^m m!}{m + 181} \right) + 
\cfrac{1}{181} + \cfrac{1}{m + 181}.

 

Задачу решили: 44
всего попыток: 86
Задача опубликована: 26.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Для функции f(x) при x>1 выполняется равенство: 
f(x2-1)+2f((2x-1)/(x-1)2)=2-4/x+3/x2. Найдите максимальное значение 100f(3/2).

Задачу решили: 40
всего попыток: 79
Задача опубликована: 31.10.12 08:00
Прислал: zmerch img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Найдите количество подмножеств множества натуральных чисел {1,2,...,37} с суммой элементов, делящейся на 74.

+ 23
  
Задачу решили: 107
всего попыток: 193
Задача опубликована: 02.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

В школе, где учится больше 225, но меньше 245 учеников, часть учеников являются отличниками, а остальные хорошистами. После контрольной работы 2/7 отличников стали хорошистами, а хорошисты так и остались хорошистами за исключением одного человека, который  стал троечником. При этом хорошистов и отличников стало поровну. Сколько учеников могло быть в школе?

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 80
всего попыток: 104
Задача опубликована: 14.11.12 08:00
Прислал: pvpsaba img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Площадь трапеции равна 50, а сумма ее диагоналей - 20. Найти квадрат высоты трапеции.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.