img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к решению задачи "Утроение октаэдра" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 37
всего попыток: 53
Задача опубликована: 12.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найти две последние цифры значения выражения 1100+2100+3100+...+100100.

Задачу решили: 32
всего попыток: 35
Задача опубликована: 19.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Пусть a, b и c - положительные целые числа такие, что
5a+5b+2ab=92,
5b+5c+2bc=136,
5c+5a+2ca= 244.

Найдите 7a+8b+9c=?

Задачу решили: 28
всего попыток: 29
Задача опубликована: 22.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Пусть p - простое число, а n - целое положительное число и
(p−4)(p+1)(p+3)=(n−4)(n+4). Найдите сумму всех p.

Задачу решили: 28
всего попыток: 28
Задача опубликована: 24.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть a, b и c - положительные целые числа, a≤b≤c≤200 и
a+b=c,
a4+b2=c2,
a3=b+c.

Найдите сумму всех возможных решений a+b+c.

Задачу решили: 31
всего попыток: 39
Задача опубликована: 26.08.22 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Найдите количество целых неотрицательных упорядоченных троек чисел x, y и z таких, что:
x+y=z2,
x2+y2=z3.

Задачу решили: 4
всего попыток: 47
Задача опубликована: 12.09.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 2 img
баллы: 100

На рисунке изображён пример полиомино - фигуры, состоящей из какого-то количества смежных клеток размером 1x1 на листе тетрадки в клеточку:

Полиомино в квадрате 9x9

На том же рисунке также изображён квадрат размером 9x9, в котором данное полиомино помещается целиком.

В этом примере полиомино занимает на листе тетрадки 10 строк и 11 столбцов, а стороны большого квадрата наклонены к сторонам клеточек под углами с тангенсами 2 и -1/2. На рисунке также выделены вершины полиомино, лежащие на сторонах большого квадрата.

Нас интересует количество различных (не конгруэнтных) полиомино, обладающих следующими двумя свойствами:

  1. Для полиомино существует квадрат 9x9, в котором оно помещается целиком.
  2. Полиомино является «максимальным»: Если к нему добавить хотя бы одну клетку, то уже не существует квадрат 9x9, в котором оно будет помещаться целиком.

Разобъём все полиомино, обладающие двумя указанными свойствами, по количествам строк и столбцов, которые они занимают на листе тетрадки. Обозначим:
n1 – Количество полиомино, занимающих 9 строк и 9 столбцов;
n2 – Количество полиомино, занимающих 9 строк и 10 столбцов (или наоборот);
n3 – Количество полиомино, занимающих 10 строк и 10 столбцов;
n4 – Количество полиомино, занимающих 10 строк и 11 столбцов (или наоборот);
n5 - Количество полиомино, занимающих 11 строк и 11 столбцов.

В ответ введите эти 5 чисел подряд, без пробелов, слева направо: n1n2n3n4n5

Задачу решили: 21
всего попыток: 36
Задача опубликована: 21.09.22 08:00
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: putout (Дмитрий Лебедев)

Найти количество различных троек действительных чисел (a, b, c) таких, что:
a2+b2+c2=66,
a3+b3+c3=408,
a4+b4+c4=2658.

Задачу решили: 24
всего попыток: 42
Задача опубликована: 14.12.22 00:08
Прислал: admin img
Вес: 2
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz

Пусть положительные действительные числа a ≥ b ≥ c такие, что 2b/(b+c) + a/c + 2c/(a+c) = 17. Найдите максимум a/(b+c)+b/(c+a).

Задачу решили: 23
всего попыток: 30
Задача опубликована: 16.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите количество целых решений уравнения:
x2022+(2022!+1!)x2021+(2021!+2!)x2020+ ... + (1!+2022!)=0, где n!=1*2*...*n.

Задачу решили: 22
всего попыток: 34
Задача опубликована: 23.12.22 00:08
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: aaa_uz

Целочисленная функция f(x) (f: Ν+ → N+) такая, что 0 < f(a) < f(b) для всех a < b и f(f(x)) = 3x. Найдите f(2023)+f(2022)+f(2021)-3f(2020).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.