Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
39
всего попыток:
76
Найдите положительный остаток при делении 666666777777 на 1464851.
Задачу решили:
53
всего попыток:
54
К стороне AB квадрата ABCD прилегает прямоугольный треугольник ABM так, что AB является гипотенузой. Расстояние от точки M до центра квадрата O (точка пересечения диагоналей квадрата) равно 10 см. Найти площадь четырехугольника AOBM.
Задачу решили:
54
всего попыток:
111
Найти сумму всех целых n таких, что n2+2n+2 является делителем n3+4n2+4n-14.
Задачу решили:
76
всего попыток:
117
В игре У2В3 за каждый ход можно либо умножить число на 2, либо вычесть 3. За какое минимальное число ходов можно из 11 получить 25.
Задачу решили:
53
всего попыток:
87
При каких значениях а и b многочлен x4+ax3+bx2-8x+1 является полным квадратом. В ответе указать сумму всех возможных значений b.
Задачу решили:
29
всего попыток:
70
К стороне АВ квадрата АВСD примыкает прямоугольный треугольник АВМ (АВ-гипотенуза, М расположена внутри квадрата). Расстояние МО=10 см (О является точкой пересечения диагоналей квадрата). Найти площадь четырехугольника АОМВ, определив минимальный целочисленный размер стороны квадрата в см для данного условия. Ответ округлить до целого.
Задачу решили:
71
всего попыток:
88
Найдите площадь желтого прямоугольника.
Задачу решили:
33
всего попыток:
43
Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1). Причем, центры окружности и клетки не обязательно совпадают. Пусть L1 – сумма длин участков этой окружности, проходящих по белым клеткам, а L – длина всей окружности. Определите точную верхнюю границу отношения L1/ L.
Задачу решили:
49
всего попыток:
50
Вовочка в кижном магазине покупал только книги, цены на которые заканчивается на 99 коп. В итоге он заплатил 69 руб. 79 коп. Сколько всего книг он купил?
Задачу решили:
19
всего попыток:
45
Одна из 11 монеток обладает странным свойстовом - она может быть либо настоящей, либо фальшивой (более легкой), настоящие монетки весят одинаково. При этом после каждого взвешивания она меняет свое состояние на другое. В каком состоянии она находится в данный момент неизвестно. За сколько взвешиваний на чашечных весах ее можно определить?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|