Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
198
всего попыток:
360
На какое максимальное число частей могут делить пространство сфера и поверхность куба?
Задачу решили:
134
всего попыток:
351
Бильярд имеет форму прямоугольного треугольника, один из углов которого равен 30°. Из этого угла в середину противоположной стороны выпущен шар, который при ударах о стенки бильярда отскакивает от них по закону: угол падения равен углу отражения. Сколько раз шар ударится о стенки прежде, чем попадёт в лузу, находящуюся в вершине угла 60°?
Задачу решили:
160
всего попыток:
618
Сначала первая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Потом вторая труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. Наконец, третья труба наполняла бассейн ровно половину времени, необходимого двум другим трубам, чтобы полностью его наполнить. В результате бассейн оказался наполненным за 2 часа. За сколько минут все три трубы наполняют бассейн, если работают одновременно?
Задачу решили:
228
всего попыток:
410
Найдите трёхзначное число, имеющее наибольшее число различных делителей.
Задачу решили:
269
всего попыток:
324
В качестве первого члена последовательности возьмём любое натуральное число, кратное трём. Все остальные её члены получаются по правилу: каждое следующее число равно сумме кубов всех цифр предыдущего. Оказывается, что в любой такой последовательности рано или поздно появляется некое число, которое уже не меняется. Найдите это число.
Задачу решили:
244
всего попыток:
281
Найти все трёхзначные числа, равные сумме факториалов своих цифр (k! — читается "k факториал" — это произведение всех натуральных чисел от 1 до k). В ответе укажите сумму всех найденных чисел.
Задачу решили:
421
всего попыток:
655
В ряд выписаны числа: 1, 2, 3, 4, 5, 6. За один ход разрешается либо прибавить к любым двум числам по единице, либо отнять от любых двух чисел по единице. За какое минимальное число ходов можно получить строку из одних пятёрок? Если Вы считаете, что это невозможно, то введите 0.
Задачу решили:
161
всего попыток:
335
Есть 10 упаковок по 100 одинаковых монет в каждой. Есть несколько упаковок с фальшивыми монетами, вес каждой из которых на 0,1 грамма меньше, чем настоящей. Имеются весы, измеряющие вес с точностью до 0,1 грамма. За какое минимальное число взвешиваний можно выявить все упаковки с фальшивыми монетами? (Веса настоящих монеты известны. В каждой упаковке либо все монеты фальшивые, либо все настоящие. Упаковки можно вскрывать.)
Задачу решили:
198
всего попыток:
269
Стороны треугольника — последовательные целые числа. Найдите эти стороны, если известно, что одна из его биссектрис перпендикулярна одной из его медиан. В ответе укажите сумму сторон треугольника.
Задачу решили:
178
всего попыток:
391
Сколькими нулями оканчивается число (20092)! (n! - это произведение всех натуральных чисел от 1 до n). Ответ "много" - не засчитывается!
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|