Лента событий:
putout решил задачу "Гирлянда на ёлочке" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
61
Как показано на рисунке △ABC разделяется на 3 части линиями DE и FG. DE || BC. FG делит трапецию BDEC на два "воздушных змея" BFGC и FDEG, все длины сторон в которых являются целыми числами. |GF| = |GC| = |GE| = 17, а |BD| = 35. Найти площадь синего треугольника △ADE.
Задачу решили:
12
всего попыток:
19
Внутри треугольника ABC выбрана точка из которой проведены отрезки к каждому из углов треугольника. В результате исходный треугольник разбился на три неконгруэнтных треугольника с целочисленными сторонами. Найдите минимально возможную площадь треугольника ABC. В ответе введите квадрат этой площади.
Задачу решили:
6
всего попыток:
21
Ребра правильного тетраэдра поделены на 6 равных частей. Провели всевозможные плоскости, проходящие через точки деления и параллельные граням тетраэдра, а также четыре плоскости, содержащие сами грани тетраэдра. На какое количество частей эти плоскости разбивают пространство?
Задачу решили:
9
всего попыток:
16
В правильном шестиугольнике со стороной 3 нарисовали сетку из единичных равносторонних треугольников (смотри рисунок). Художник время от времени подходит к рисунку с шестиугольником, окунает кисть в банку с краской и закрашивает по линиям сетки весь контур одного равностороннего треугольника любого размера. При этом контур очередного закрашиваемого треугольника может проходить по каким-то ранее закрашенным местам. За какое минимальное количество подходов художник может закрасить всю сетку (включая границу шестиугольника)? На рисунке изображён пример частичного закрашивания сетки после 4-х подходов (исключительно для красоты художник использовал разные цвета). В качестве решения необходимо предъявить доказательство минимальности того количества подходов, которое вы нашли.
Задачу решили:
10
всего попыток:
30
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы мы увидели все эти 4 символа (в любой последовательности)?
Задачу решили:
20
всего попыток:
33
Суммы цифр натуральных чисел N и N+1 кратны 22. Найдите наименьшее число N.
Задачу решили:
19
всего попыток:
72
Дедушке прописали принимать по полтаблетки каждый день в течение 60 дней. В пузырьке было 30 целых таблеток. В первый день он вытряхнул из пузырька таблетку и разломал ее пополам, одну половинку принял, а вторую положил обратно в пузырёк. Каждый следующий день он случайным образом вытряхивал из пузырька таблетки - если это оказывалась целая таблетка, то он ее разламывал и принимал половинку, а вторую клал в пузырёк, если выпадала половинка, то он принимал её. На какой день с вероятностью не менее 1/2 выпадет половинка таблетки?
Задачу решили:
10
всего попыток:
20
Полный набор игры « Чудо дерево» состоит из восьми фигурок(смотрите рисунок). Из полного набора сложить выпуклый n-угольник без просветов и наложений. Фигурки можно поворачивать и переворачивать. Какие значения может принимать n? В ответе укажите сумму всех различных значений n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|