Лента событий:
tubaki решил задачу "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
147
всего попыток:
205
Найти максимальное целое число, которое нельзя представить как сумму двух взаимно простых целых чисел, больших 1.
Задачу решили:
272
всего попыток:
297
В равнобедренной трапеции средняя линия равна 10, а диагонали взаимно перпендикулярны. Найти площадь трапеции.
Задачу решили:
129
всего попыток:
277
Трёх одинаковых роботов расположили в вершинах правильного треугольника со стороной 21 сантиметр. Скорость каждого робота 2 сантиметра в секунду. Роботов настроили так, чтобы после включения каждый гнался за следующим по часовой стрелке (в любой момент вектор скорости направлен на цель). Сколько сантиметров преодолеет каждый из роботов после их одновременного включения и до того, как они все поймают друг друга?
Задачу решили:
194
всего попыток:
292
Найдите сумму всех различных натуральных значений n, при которых сумма 1!+2!+3!+...+n! является квадратом целого числа. (Как обычно, n!=1·2·3·...·n.)
Задачу решили:
583
всего попыток:
685
188 — 4 232 — 0 100 — 2 163 — 1 386 — ?
Задачу решили:
277
всего попыток:
480
Какое наибольшее количество месяцев одного года могут иметь по 5 пятниц?
Задачу решили:
202
всего попыток:
345
Сколько различных решений имеет уравнение: 24x6−4x5−78x4+29x3+56x2−42x+8=0?
Задачу решили:
177
всего попыток:
323
Если p и p+2 — простые числа, то они называются близнецами. Две пары близнецов: p, p+2, p+6 и p+8 (все — простые!) назовём квартетом. А на какое наибольшее число в этом случае всегда делится число p+4 при p>5?
Задачу решили:
108
всего попыток:
195
В ряд записаны 2009 различных целых положительных чисел. Известно, что для любого натурального n≤2009 сумма любых n чисел, записанных подряд, делится на n. Найдите наименьшее значение суммы всех 2009 чисел.
Задачу решили:
131
всего попыток:
182
Продолжите последовательность: Т464, Г6128, О8126, Д123020, ?
(Задача предложена Б.Бурдой во время "Колорадского конкурса".)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|