img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 24
всего попыток: 116
Задача опубликована: 01.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.

Задачу решили: 39
всего попыток: 92
Задача опубликована: 13.08.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: trial (Трибунал Данилов)

Функция f: N→N такова, что f(f(n))+f(n+1)=n+2 для всех натуральных n. Чему равно f(2014)?

Задачу решили: 45
всего попыток: 158
Задача опубликована: 10.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найти количество функций f: R→R таких, что для всех действительных x и y верно f(x+y)=f(x)f(y)f(xy).

Задачу решили: 34
всего попыток: 132
Задача опубликована: 15.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: bbny

Найдите количество пар действительных чисел (a, b) таких, что если c является корнем уравнения x2+ax+b=0, то и c2-2 также является корнем.

Задачу решили: 35
всего попыток: 57
Задача опубликована: 24.09.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа x и y такие, что x2+y2=(x/y+y/x)2. Пусть m - наибольшее, а M - наименьшее возможные числа такие, что верно всегда m≤(x3y3+x2y+xy2+1)/x3y3≤M. Найдите M+m.

Задачу решили: 33
всего попыток: 47
Задача опубликована: 01.10.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

Рассмотрим пары неотрицательных целых чисел (xi,yi) удовлетворяющих равенству: 2x2+x=3y2+y таких, что x1+y1 < x2+y2 < ....

Найдите сумму первых 4-х пар значений x1+y1+x2+y2+x3+y3+x4+y4.

Задачу решили: 51
всего попыток: 81
Задача опубликована: 10.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Известно:

a+b+c+d=0
abcd=1
a3+b3+c3+d3=1983.

Найти 1/a+1/b+1/c+1/d. 

Задачу решили: 69
всего попыток: 99
Задача опубликована: 17.11.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: zmerch

Пусть a+b+c=1 и a, b, c >0. Найдите минимум a2+2b2+c2.

Задачу решили: 19
всего попыток: 96
Задача опубликована: 01.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Vkorsukov

Найдите максимальное целое число n такое, что существуют n действительных чисел x1, x2, ..., xn которые удовлетворяют неравенству для всех 1 ≤ i < j ≤ n:
100(1+xixj)2 ≤ 99(1+xi2)(1+xj2). 

Задачу решили: 40
всего попыток: 50
Задача опубликована: 22.12.14 08:00
Прислал: admin img
Вес: 1
сложность: 2 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg

Пусть действительные числа a ≥ b ≥ c > 0 и x ≥ y ≥ z > 0. Найти минимум (ax)2/((by+cz)(bz+cy)) + (by)2/((cz+ax)(cx+az)) + (cz)2/((ax+by)(ay+bx)).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.