Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
102
всего попыток:
288
Сколько существует натуральных чисел, делящихся нацело на 210 и имеющих ровно 210 различных натуральных делителей?
Задачу решили:
105
всего попыток:
187
Если от натурального числа отнять квадрат суммы его цифр, какое наименьшее число может получиться?
Задачу решили:
46
всего попыток:
155
Дано: N=a1+a2+...+a2010=b1+b2+...+b2011, все числа a1, a2, ..., a2010 — натуральные и имеют одну и ту же сумму цифр A, все числа b1, b2, ..., b2011 — натуральные и имеют одну и ту же сумму цифр B. Найдите наименьшее значение N.
Задачу решили:
87
всего попыток:
127
В последовательности {a0, a1, a2,...} a3=91 и при n≥0 an+1=10an+(–1)n. Сколько элементов этой последовательности являются квадратами целых чисел?
Задачу решили:
109
всего попыток:
131
В какое наибольшее число раз сумма цифр натурального числа n может превышать сумму цифр числа 8n?
Задачу решили:
70
всего попыток:
200
Найдите максимальное натуральное число N такое, что число N! представимо в виде произведения N−3 последовательных натуральных чисел.
Задачу решили:
81
всего попыток:
121
Сколько существует натуральных чисел, кубы которых не представимы в виде разности квадратов двух целых чисел?
Задачу решили:
93
всего попыток:
215
По кругу выписаны числа 1,2,3,...,10 в некотором порядке. Петя вычислил 10 сумм всех троек соседних чисел и написал на доске наименьшую из них. Какое наибольшее число могло появиться на доске?
Задачу решили:
79
всего попыток:
168
Какое наибольшее количество элементов может содержать множество различных натуральных чисел, не превосходящих 16 и среди которых нет тройки попарно взаимно простых чисел?
Задачу решили:
75
всего попыток:
127
Пусть A(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 3, а B(n) — количество различных натуральных чисел, не превосходящих n и делящихся на 5 или на 7 (можно и на 5, и на 7 сразу, но каждое такое число учитывается только один раз). Например, A(10)=3 и B(40)=12. Найдите наибольшее n, для которого A(n)=B(n).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|