Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
46
Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, .., an, с разностью 2, обладающей свойством: a2k+1 - простое при всех k = 1, 2, . . . , n?
Задачу решили:
28
всего попыток:
51
На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?
Задачу решили:
33
всего попыток:
80
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Задачу решили:
33
всего попыток:
51
Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.
Задачу решили:
49
всего попыток:
62
Найти сумму ряда:
Задачу решили:
59
всего попыток:
133
Найти количество вариантов расстановки всех 9-ти цифр вместо звездочек (каждая цифра используется один раз), при которых одновременно превращаются в числовые тождества все три строки: * × * = *
Задачу решили:
23
всего попыток:
30
Внутри треугольника ABC размещена точка D так, что величины углов DAC, DAB, DBA равны, соответственно, 24, 30 и 18 градусов, |CD| = |CB|. Найдите величину угла CDB в градусах.
Задачу решили:
15
всего попыток:
64
Разрежьте равнобедренную трапецию с основаниями 49 и 29 см, боковой стороной 26 см на три подобные между собой трапеции всевозможными способами. Два разрезания не считать различными, если их линии разрезов симметричны относительно оси симметрии трапеции. Ответом задачи есть сумма длин линий разрезов всех возможных способов разрезания, округленная до целого числа сантиметров.
Задачу решили:
34
всего попыток:
70
Сколько всего четырёхугольников (включая невыпуклые) составляют линии в треугольнике?
Задачу решили:
45
всего попыток:
170
Площадь и периметр треугольника одно и то же минимальное целое число. Найдите это число.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|