Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
820
всего попыток:
2328
Какое минимальное количество гирек требуется, чтобы на чашечных весах взвешивать с точностью до грамма разные предметы массой от 1 до 40 граммов? (Гирьки можно класть на любые чашки весов.)
Задачу решили:
103
всего попыток:
199
Клетки шахматной доски раскрашены не в два цвета, а в несколько. Расстоянием между двумя клетками называется длина кратчайшего пути обычной шахматной ладьи от одной клетки до другой. (Длины сторон клеток равны единице.) Известно, что любые две клетки, находящиеся на расстоянии 6, — разных цветов. В какое наименьшее число цветов могут быть раскрашены клетки такой доски?
Задачу решили:
91
всего попыток:
330
Из клетчатой бумаги вырезали квадрат 9×9. Какое наибольшее число клеток в нём можно разрезать по обеим диагоналям так, чтобы квадрат не распался на части?
Задачу решили:
99
всего попыток:
292
Играя в морской бой, Саша стремится расположить все свои корабли внутри прямоугольника наименьшей площади. Сколько клеток составляет площадь такого прямоугольника? (В морской бой играют на поле 10×10, на котором нужно расположить 10 кораблей — один 4×1, два 3×1, три 2×1 и четыре 1×1 — так, чтобы они не соприкасались ни сторонами, ни углами.)
Задачу решили:
118
всего попыток:
243
Какое минимальное число звёздочек можно так расставить в клетках таблицы 4×4, чтобы после вычёркивания любых двух строк и любых двух столбцов этой таблицы в оставшихся клетках всегда оставалась хотя бы одна звездочка?
Задачу решили:
67
всего попыток:
108
Кенгуру-чемпион может прыгать по прямой вправо и влево и совершать гигантские прыжки. Длина его первого прыжка составляет 1 м, второго — 2 м, третьего — 4 м и так далее (длина каждого прыжка всегда в два раза больше, чем предыдущего). Через какое минимальное количество прыжков кенгуру окажется на расстоянии D = 123456789123456789123456789 м от исходной точки O?
Задачу решили:
57
всего попыток:
92
Известно, что для трех различных натуральных чисел их сумма, а также суммы каждых двух являются квадратами целых чисел. Найдите минимальное произведение этих чисел.
Задачу решили:
59
всего попыток:
89
Для действительных чисел x, y, z, u верны следующие уравнения: x2+y2=16, z2+u2=25, xu-yz=20. Найти максимум x·z.
Задачу решили:
44
всего попыток:
63
Рассмотрим все пары ненулевых целых чисел (a, b) таких, что уравнение (ax-b)2+(bx-a)2=x имеет хотя бы одно целое решение. Найдите сумму всех решений уравнения.
Задачу решили:
49
всего попыток:
62
Найти сумму ряда:
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|